

Appendix B – Aquatic Resources Study Report

Bad Creek Pumped Storage Project

Oconee County, South Carolina
January 2025

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies. Duke Energy completed its first year of studies in 2023 with stakeholder consultation as required by the Commission's SPD. Duke Energy filed the Initial Study Report (ISR) on January 4, 2023, and per the Commission's regulations at 18 CFR §5.15(c), Duke Energy held an ISR meeting with participants and FERC staff within 15 days of filing the ISR on Wednesday, January 17, 2024. Duke Energy completed its second and final year of studies in 2024; this Updated Study Report [18 CFR §5.15(c)] describes the Licensee's methods and results of the studies conducted in support of preparing an application for a new license for the existing Project and construction of the proposed Bad Creek II Power Complex (Bad Creek II).

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Aquatic Resources Study

2.1 FERC Environmental Resource Issues

The Commission issued Scoping Document 2 on August 5, 2022, which identified the following environmental resource issues to be analyzed in the National Environmental Policy Act (NEPA) document for the Project relicensing related to aquatic resources. These resource issues address the effects of continued Project operations as well as potential construction and operation of Bad Creek II during the new license term:

- Effects of construction-related erosion, sedimentation, and spoils disposal on water quality, aquatic habitat, and aquatic biota in Lake Jocassee and streams in the Project vicinity.
- Effects of Project operation on water levels in Lake Jocassee.
- Effects of Project operation on water quality in Lake Jocassee, including water temperature, dissolved oxygen (DO) concentrations, and vertical mixing of DO.
- Effects of reservoir fluctuations associated with Project operation on aquatic habitat and biota in Lake Jocassee.
- Effects of vertical mixing of DO associated with Project operation on fish populations in Lake Jocassee.
- Effects of Project operation on aquatic habitat and biota in Howard Creek.
- Effects of Project-induced impingement, entrainment, and turbine mortality on fish populations in Lake Jocassee.
- Effects of Project recreation on aquatic resources.
- Effects of construction-related erosion, sedimentation, and spoils disposal in the Bad Creek reservoir on Lake Jocassee.

The Aquatic Resources Study evaluated impacts associated with construction and operation of Bad Creek II on water quality and water resources related to aquatic life and habitat, while the Water Resources Study (Appendix A) focused on historical water quality data of Lake Jocassee, potential impacts to surface waters due to construction of Bad Creek II, and water resources affected by a second inlet/outlet structure in the Whitewater River cove of Lake Jocassee. The Aquatic Resources Study is complete, and this report presents methods and results of individual study tasks.

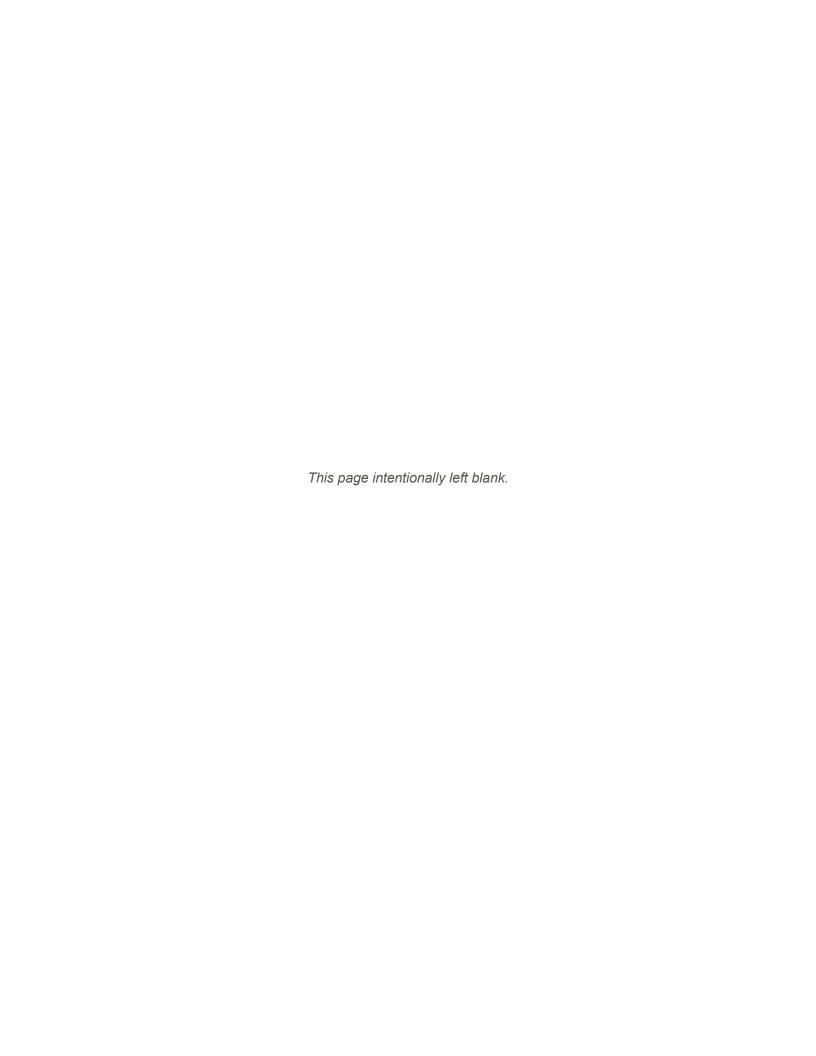
2.2 Study Goals and Objectives

Tasks carried out for the Bad Creek Aquatic Resources Study employed standard methodologies consistent with the scope and level of effort described in the RSP. The goal of the Aquatic Resources study was to evaluate potential impacts to fish and aquatic life populations, communities, and habitats, due to the construction and operation of the proposed facility. The main objectives of this study are as follows:

- To evaluate the potential for increased fish entrainment due to the addition of Bad Creek
 II and consult with agencies and other Project stakeholders regarding results of the 2021
 desktop Entrainment Study.
- To assess changes to pelagic and littoral aquatic habitat in Lake Jocassee resulting from the expanded underwater weir and additional discharge, using models developed for the Water Resources Study and Keowee-Toxaway Hydroelectric Project relicensing.
- To evaluate potential direct impacts to aquatic habitat (including wetlands) related to Bad
 Creek II construction activities and weir expansion by quantifying and characterizing
 surface waters including resource quality. Presence/absence mussel surveys of streams
 located in upland areas where spoil deposition may occur were also conducted.

Objectives of the Aquatic Resources Study were met through the three study tasks listed in Table 1 below.

3 Report Layout


All tasks for the Aquatic Resources Study are complete and study task reports have been developed in consultation with the Aquatic Resources Resource Committee; study task reports are final and attached to this report as shown in Table 1.² Documentation of consultation with the Resource Committee is presented in Attachment 4.

² The Task 1 report is unchanged from the final deliverable filed with the ISR; however, additional modeling was carried out due to unit technology modifications resulting in increased hydraulic capacities at Bad Creek II, therefore, the report is being filed again with an addendum presenting these recent results (Addendum 1) as well as additional documentation of species literature search (Addendum 2).

Table 1. Aquatic Resources Study Attachments

Study Report Title	Attachment	Attachment Title
Appendix B – Aquatic	1	Desktop Entrainment Analysis Final Report
	2	Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat Final Report
Resources Study Report	3	Impacts to Surface Waters and Associated Aquatic Fauna Final Report
	4	Consultation Documentation

Attachment 1 Desktop Entrainment Analysis Final Report

DESKTOP ENTRAINMENT ANALYSES

BAD CREEK PUMPED STORAGE PROJECT (FERC No. P-2740)

Prepared for:

Duke Energy

Prepared by:

Kleinschmidt Associates

December 2021
Revised November 2023

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1-1
	1.1	Background	1-2
2.0	MET	HODS	2-1
	2.1	Exploratory Analysis	2-1
	2.2	Selection of Target Species	2-2
	2.3	Entrainment Mortality Event Simulation	2-2
		2.3.1 Seasonal Entrainment Rate	2-2
		2.3.2 Scenario Development	2-3
	2.4	Vulnerability to Entrainment	
	2.5	Assigning Risk	
3.0	RESU	JLTS AND DISCUSSION	3-1
	3.1	Exploratory Data Analysis	3-1
		3.1.1 Analysis of Lake Jocassee Elevation	3-1
		3.1.2 Analysis of Entrainment Rates	3-3
		3.1.3 Analysis of Temperature Data	3-6
		3.1.4 Analysis of Hours Operated Per Unit	3-7
		3.1.5 Entrainment as a Function of Elevation	3-11
	3.2	Entrainment Impact	3-14
	3.3	Relative Vulnerability to Entrainment	
	3.4	Entrainment Risk	
4.0	CON	ICLUSION	4-1
5.0	REFE	ERENCES	5-1

Table of Contents (Cont'd)

LIST OF TABLES

Table 2.1	Monthly Sum of Entrainment at Bad Creek Project from 1991 to 1993 2-1
Table 2.2	Seasonal Entrainment Event Scenarios2-4
Table 2.3	Bad Creek 1 Seasonal Unit Operations2-4
Table 3.1	Statistical summary of forebay elevation data from 1990-1993 (measured in
	ft)3-1
Table 3.2	Statistical summary of daily entrainment data by year3-4
Table 3.3	Statistical summary of entrainment rate by forebay elevation operation
	mode3-4
Table 3.4	Statistical summary of temperature data3-6
Table 3.5	Bad Creek Unit 1 Hours Operated Summary Statistics (2014–2018)3-7
Table 3.6	Bad Creek Unit 2 Hours Operated Summary Statistics (2014–2018) 3-8
Table 3.7	Bad Creek Unit 3 Hours Operated Summary Statistics (2014–2018) 3-8
Table 3.8	Bad Creek Unit 4 Hours Operated Summary Statistics (2014–2018) 3-8
Table 3.9	Statistical Summary of data from all scenarios within simulation3-15
Table 3.10	Entrainment impact and likelihoods by season3-15
Table 3.11	Statistical summary of daily entrainment by season3-15
Table 3.12	Population Growth Rates Used for Vulnerability Assessment3-19
Table 3.13	Bad Creek Entrainment Risk3-20

LIST OF FIGURES

Figure 1.1	Bad Creek Project Location Map	1-4
Figure 2.1	Estimated Local Population Size (Combined Species) 1989-2020, w	
	Regression Smoother Trend Estimate Overlaid	2-8
Figure 3.1	Jocassee Forebay local datum elevation observations from 1991-1	9933-2
Figure 3.2	Jocassee Forebay local datum elevation observations in 1991	3-2
Figure 3.3	Jocassee Forebay local datum elevation observations in 1992	3-3
Figure 3.4	Jocassee Forebay local datum elevation observations in 1993	
Figure 3.5	Daily entrainment at elevations less than 89 ft	3-5
Figure 3.6	Daily Entrainment Rates from 1991-1993	3-5
Figure 3.7	Daily entrainment at elevations greater than 89 ft	3-6
Figure 3.8	Lake Jocassee Mean daily temperature (C) from 1991-1993	3-7
Figure 3.9	Unit 1 Operation	3-9
Figure 3.10	Unit 2 Operation	3-9
Figure 3.11	Unit 3 Operation	3-10
Figure 3.12	Unit 4 Operation	3-10
Figure 3.13	Instantaneous elevation and entrainments rate from 1991-199	3, green
	represents the entrainment observations and blue represents the	e forebay
	elevation observations	3-12
Figure 3.14	1991 Instantaneous elevation and entrainment rate, where green re	•
	the entrainment observations and blue represents the forebay	elevation
	observations	3-12
Figure 3.15	1992 Instantaneous elevation and entrainments rate, wher	e green
	represents the entrainment observations and blue represents the	e forebay
	elevation observations	3-13
Figure 3.16	1993 Instantaneous elevation and entrainments rate, wher	e green
	represents the entrainment observations and blue represents the	e forebay
	elevation observations	
Figure 3.17	Comparison of elevation and temperature data from 1991-1993, w	_
	being temperature and blue being forebay elevation	
Figure 3.18	Winter Daily Entrainment Impact	3-16
Figure 3.19	Spring Daily Entrainment Impact	3-16
Figure 3.20	Summer Entrainment Impact	
Figure 3.21	Fall Entrainment Impact-High Operating Level	
Figure 3.22	Fall Entrainment Impact-Low Operating Level	3-18

1.0 INTRODUCTION

The Bad Creek Pumped Storage Project (FERC No. 2740) (Bad Creek Project) (Figure 1.1) is a 1,400 megawatt¹ (MW) pumped-storage hydroelectric facility that has served the Duke Energy Carolinas' (Duke Energy) customer base for nearly 30 years. Duke Energy is currently conducting the Federal Energy Regulatory Commission (FERC) relicensing process to obtain a new federal operating license for the Bad Creek Project. This process involves the consideration of environmental, social, and developmental resources of the Bad Creek Project and the applicable surrounding area. To that end, the fisheries resources of Lake Jocassee, the Bad Creek Project's lower reservoir for pumped-storage operations, and the potential impacts of Bad Creek Project operations on these resources, are being analyzed during the relicensing process in consultation with state and federal resource agencies and other interested parties.

The Bad Creek Project's configuration and projected use of the waterways for power generation is also a subject of consideration during relicensing; specifically, when weighing the benefits of power and non-power resources. Recent developments in the regional power grid provide a strategic rationale for considering Bad Creek Project capacity increases. This was reviewed most recently when the original license for the Bad Creek Project was amended in 2018 to accommodate turbine upgrades. The resulting improved pump-turbine, motor-generator design will increase the Bad Creek Project's life expectancy and provide a cost-effective option for adding an additional 290 MW of generating capacity and 240 MW of pumping capacity to the Project at the historical average available gross head. Once complete, Bad Creek Project upgrades provide for an environmentally sound method for adding capacity to support intermittent renewable resources, such as regional sources of solar energy generation, as the upgrades only affect the rate at which water flows through the Bad Creek Project units. The upgrades will not affect the quantity of water pumped or discharged or impoundment levels or the ultimate magnitude of fluctuations of the upper and lower reservoirs.

Duke Energy is additionally considering the construction of a new powerhouse (Bad Creek II) equal in size and capacity to augment the existing powerhouse through the relicensing process. The storage capacity of the upper reservoir would not change. Thus, pumping capacity would increase from 3019 cubic feet per second (cfs) to 6038 cfs, meaning

¹ Upgraded capacity per 164 FERC ¶ 62,066.

pumping time would be reduced by half of existing to more efficiently support intermittent renewable energy sources and stability of the regional power grid.

The issue of fish entrainment at a hydroelectric facility is a subject typically analyzed during a FERC relicensing process. Fish entrainment at the existing Bad Creek Project has been a subject of extensive studies throughout the Bad Creek Project's history. Therefore, a significant baseline of entrainment information is currently available for review. This report was developed in support of the relicensing and proposed project expansion (i.e., the addition of a second powerhouse, identical in size and capacity to the existing powerhouse and adjacent to the existing powerhouse). More specifically, this report considers the potential for the entrainment of Lake Jocassee fishes through the Project under the proposed action (i.e., two powerhouses).

1.1 Background

Fish entrained through hydroelectric facilities like the Bad Creek Project (Figure 1.1) are exposed to turbine passage mortality stressors. While mortality and entrainment rates are well-documented separately, the cumulative effects on aquatic populations are not. Researchers often lack the necessary parameters to accurately model the fate of all impacted species (natural mortality, recruitment, etc.), yet they are routinely required to assess the cumulative population-level effects of those species impacted. Another approach to assess cumulative system-wide effects to the suite of species impacted by hydroelectric development is needed.

Risk analysis offers a potential solution to this need. An entrainment risk assessment (ERA) identifies and analyzes potential future entrainment mortality events while assessing the resiliency of the population (i.e., its ability to tolerate the expected level of mortality). Applying a risk assessment framework to evaluate impacts to fisheries is not new. Patrick et al. (2009) developed the expanded productivity and susceptibility assessment (ePSA) to understand data-poor fish stocks. The ePSA assesses the risk of a fish stock becoming overfished as a function of its productivity (replenish rate) and susceptibility to the fishery. The ePSA incorporates demographic parameters like the maximum age and size of a fish, individual growth rates, natural mortality, fecundity, breeding strategy, recruitment pattern, and age at maturity. The ePSA has been used to assess fishing risks for other species including elasmobranchs (Cortés et al. 2010; Furlong-Estrada, Galván-Magaña, and Tovar-Ávila 2017) and grouper (Pontón-Cevallos et al. 2020). The ePSA is one of a broad class of applications that assess anthropogenic sources of risk on fishery populations.

The ERA method is not new to assessing entrainment risk at hydropower projects. In 2021, van Treeck et al. developed the European Fish Hazard Index to assess entrainment risk at hydropower projects. This tool considered plant design and operation, the sensitivity and mortality of species due to entrainment, and overarching conservation goals for the river. It assessed entrainment mortality with empirically derived functions for Kaplan and Francis turbines. The United States has seen development of ERA methods as well. In 2012, Cada and Schweizer developed the qualitative traits-based assessment to evaluate the entrainment risk of data-poor species.

The rate at which fish are entrained through hydroelectric facilities is also a well-studied phenomenon. Entrainment rates for this assessment have been developed from observed entrainment via hydroacoustic monitoring at the Bad Creek Project intake. Entrainment rates are typically expressed in fish per million cubic feet of water (fish/Mft³). Because the number of hours the Bad Creek Project is expected to run each day and the total volume of water pumped in Mft³ is known, the number of fish expected to be entrained can be estimated. The analysis employed to assess entrainment risk at the Bad Creek Project is therefore quantitative.

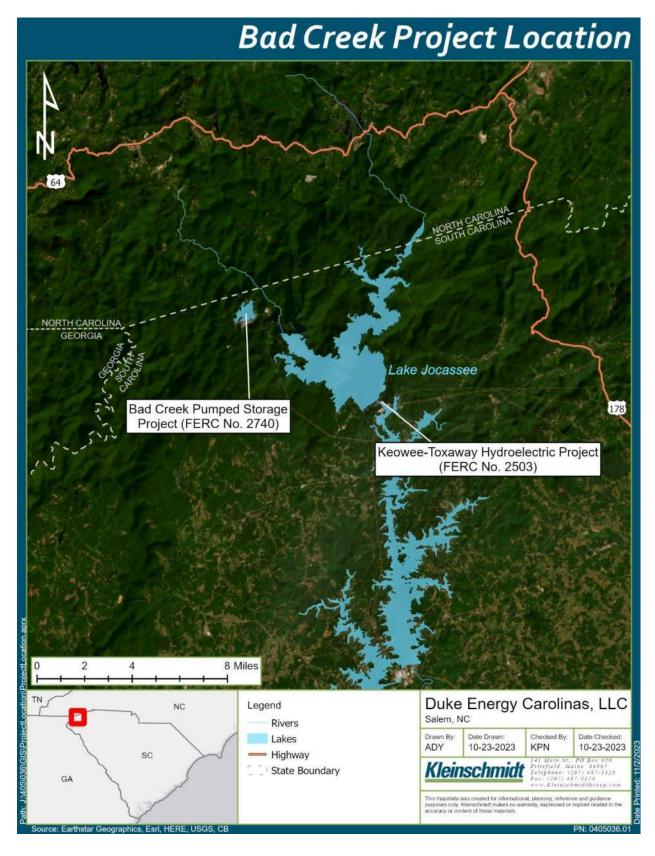


Figure 1.1 Bad Creek Project Location Map

2.0 METHODS

An ERA consists of two major components: (1) a Monte-Carlo simulation model that estimates the number of fish entrained and the number of expected mortalities; and (2) an objective method of ranking the relative vulnerability of those species subjected to entrainment. The methods section will start with a selection of target species, followed by an exploratory data analysis, the description of the simulation, and finally the assignment of risk.

2.1 Exploratory Analysis

Duke Energy provided Kleinschmidt Associates (Kleinschmidt) with numerous datasets describing Lake Jocassee forebay operating levels, water quality, entrainment, and current Bad Creek Project operations. The first dataset (Dataset A) titled "1990.1994 Jocassee Hydro plant log" included date, time, corresponding forebay elevations, and hourly rain totals. A second dataset (Dataset B) titled "historical" was created from individual daily hydroacoustic monitoring files, which included date, time and corresponding entrainment observations for each bay from 1991 to 1993. Duke Energy provided four datasets comprised of water quality data from 1973 to 2020, which included date, time, elevation, and depth of sample as well as the pH, dissolved oxygen, water temperature, and conductivity. After organizing the dataset, data were then queried to create a single temperature dataset (Dataset C). Forebay elevation and temperature data were assessed to determine the effects of Bad Creek Project operations on entrainment. Hourly operations data (Dataset D) representing operations that respond to the solar market were also provided by Duke Energy².

Forebay elevation and water temperature data were complete in that they comprised the entire time-period of the original impact study from 1991–1994. However, the timestamps were not standardized across datasets. Once these datasets were normalized, temperature and Lake Jocassee forebay elevation observations were imputed using piecewise linear interpolation. This effectively filled the gaps within the entrainment dataset so that there was a temperature and forebay elevation observation for every entrainment observation. Temperature values were collected once per month, while Lake Jocassee forebay elevation data were collected three times per day. A clustering algorithm called a Gaussian Mixture Model was used to separate elevation observations into low and high

² The Project is primarily operated to respond to the variable reliability of regional solar resources.

operation classes for every entrainment observation. This allowed classification of each entrainment observation as having occurred during low or high operating levels. Lake Jocassee full pond elevation is 100 ft, local datum (1,110 ftmsl), for this analysis, elevation levels below, or equal to, 89 ft local datum (1,099 ftmsl) are defined as "low" and elevation levels above 89 ft local datum (1,099 ftmsl) are defined as "high."

The final set of data analyzed were unit operations. This consisted of first identifying pumping or generating operations in the data. A value of 1 was used if a unit was pumping and a value of 0 was used if it was generating. This logic was applied to all units and then summed for the total number of 15-minute intervals per day. That number was then divided by four to get total hours pumping per day. The operating hours were then analyzed by month and season, as well as weekday versus weekend, to determine any irregularities or trends.

2.2 Selection of Target Species

The species assemblage for this analysis was determined from prior empirical entrainment studies conducted at the Bad Creek Project. From 1991-1993, full discharge netting was employed at the Bad Creek Project, where the relative abundance of entrained species were calculated (Table 2.1).

Table 2.1 Monthly Sum of Entrainment at Bad Creek Project from 1991 to 1993

Species	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
Black Crappie				18	73	1			_			4
Blackbanded Darter					134	9		5				
Blueback Herring	2086	2093	1267	2885	1753	5837	5955	1854	7836	7736	9170	5466
Bluegill	8		30	116	2537	796	6626	1388	3941	2399	68	80
Brown Trout	5			56	149	41						14
Channel Catfish			1		60	9		5				
Common Carp					277	54			11			
Flat Bullhead					55			98				
Golden Shiner			2	18	153	9		2				
Green Sunfish								3	111	181		
Hybrid Sunfish									37			
Largemouth Bass					37	17	97	5	97	410		
Quillback					18							
Rainbow Trout	27					6						
Redbreast Sunfish				18	220	15	1392	547	611	480	1	16
Redear Sunfish					18							
Redeye Bass							14	2	48	62		
Spottail Shiner					18							
Striped Jumprock												14
Threadfin Shad	3033	4072	5290	8656	2302	1588	3485	425	24365	41867	71009	134314
Warmouth				124	311	63	419	4	49	113		
White Bass					2	16			113		1	
White Catfish	3		6	207	2961	196	2723	1765	1679	1339	68	2
Whitefin Shiner					20				49			
Yellow Perch	140	64	54	177	385			55	75		1	7
Yellowfin Shiner					18							

2.3 Entrainment Mortality Event Simulation

Entrainment mortality events were simulated with the open-source software package Stryke³. Stryke is an individual based model (IBM), which follows the fate of a population of fish as they migrate past a hydroelectric project. Movement and survival are simulated with Monte Carlo methods. The software is written in Python 3.7.x and utilizes Networkx⁴ to simulate routes of passage and Numpy⁵ and Scipy⁶ for pseudo-random probability distribution draws.

The assessment at the Bad Creek Project was less complex than most entrainment analyses because there are only three states within the model: lower reservoir, Bad Creek Project powerhouses, and upper reservoir. It was also assumed that all fish simulated are routed through the Bad Creek Project powerhouses and that there is 100% mortality.

2.3.1 Seasonal Entrainment Rate

An investigation of the 1997 Electric Power Research Institute (EPRI) entrainment database (EPRI 1997) indicated that the overall pattern of entrainment rates (fish/Mft³) for different species across the eastern United States were similar. Similarly, this pattern was observed at the Bad Creek Project as noted during the initial hydroacoustic monitoring entrainment survey (1991-1993). Across species, regions, and watersheds of all sizes, a small proportion of entrainment events comprised most of the overall impact, while the majority of the events constituted only a limited number of individuals. What leads to these large entertainment events is of no concern for the model because it only needs to be able to simulate their relative magnitude and frequency of occurrence.

Historic hourly entrainment data were analyzed, collected from 1991- 1993 at the Bad Creek Project intake during normal operations. The original dataset provided fish per hour measurements by unit that were enumerated with hydroacoustic monitoring. Assuming a constant flow rate of 3,690 cfs, the number of fish and total cubic feet pumped was summed for every day and then converted into an entrainment rate of fish/Mft³. Also of note, there were days when the Bad Creek Project operated but no fish were entrained. The probability of entraining fish on a given day was described with a binomial distribution, thus simulating an entrainment event occurs in two steps: 1) draw from

³ https://github.com/knebiolo/stryke

⁴ https://networkx.github.io/

⁵ https://numpy.org/

⁶ https://scipy.org/

binomial distribution to simulate presence, and 2) draw from a distribution of entrainment rates.

2.3.2 Scenario Development

Kleinschmidt developed scenarios that describe entrainment across seasons and forebay operating levels. Seasonal entrainment rates fish/Mft³ (Table 2.2) were described with Log Normal distributions. Bad Creek Project, under the proposed action of adding an additional twin powerhouse, is intended to pump up to 6 hours per day on weekdays and 2 hours per day on weekends. Duke Energy provided operations data from 2014 to 2018 in 15-minute increments that would also be reflective of the new pumping operations. It was assumed that if a unit was pumping, it was pumping at max capacity for the entire 15-minute period. Therefore, the number of hours operated per day is the number of 15-minute intervals with pumping operations divided by 4.

Lake Jocassee full pond elevation is 100 feet local datum (1,110 ftmsl), for this analysis, elevation levels below, or equal to, 89 feet, local datum (1,099 ftmsl) are defined as "low" and elevation levels above 89 feet, local datum (1,099 ftmsl) are defined as "high." In accordance with the current 10-Year Work Plan, if Lake Jocassee pool elevation falls below 1,099 ft msl, Duke Energy will implement operational changes at the Bad Creek Project based on hydro unit availability and other operational considerations to minimize fish entrainment (FERC 2017). These protocols include turning lights off near the inlet/outlet structure so as not to attract fish to the area and implementing a unit startup and shutdown sequence that minimizes fish entrainment. It was assumed that when forebay elevations are below 89 feet local datum (1,099 feet ftmsl), per the Memorandum of Understanding (MOU⁷), that units (U) were operated in the order of U4, U2, U3, U1 and that operations were dependent. In other words, the number of hours unit 2 is run is conditional on the number of hours U4 is run. The number of hours operated per day was described with a log normal distribution (Table 2.3). It is assumed that Bad Creek II (new powerhouse) is identical to Bad Creek Project's existing powerhouse and the overall order of unit prioritization between the two powerhouses is: BC2-U4, BC2-U2, BC2-U3, BC2-U1, BC1-U4, BC1-U2, BC1-U3, BC1-U1 at elevation below 89 feet local datum (1,099ftsml). At

⁷ developed in collaboration w/ Duke Energy and SCDNR to establish framework to help maintain high-quality fisheries of lakes Jocassee and Keowee" in 1996. The MOU and first 10-Year Work Plan were approved pursuant to Article 32(b)(1) of the license for the Bad Creek Project on May 1, 1997.

elevations above 89 feet (1,099 ftmsl), operations of units are independent of one another and respond to market demand, with preference to operate Bad Creek II powerhouse first.

Stryke simulated a hydrograph, which was the station capacity (3,690 cfs * 8 units = 29,520 cfs) for 365 days. For every day, Stryke first simulates operations with a draw from a binomial distribution. If Bad Creek is operating, then the number of hours per unit for each unit was simulated with a draw from a log normal distribution that was conditional on the unit that came before it. Then, it simulates whether an entrainment event occurs with a sample from a binomial distribution. If fish are present, Stryke simulates a daily entrainment event (fish/Mft³), and then expands that to a daily entrainment estimate (fish) by multiplying the entrainment rate by the total volume of water pumped (Mft³) that day. After iterating through each scenario and species combination, Stryke then summarizes results.

Table 2.2 Seasonal Entrainment Event Scenarios

Season	Operating	Probability of	Log Normal Shape Parameters			
	Level	Level Occurrence		Location	Scale	
Winter	High	0.602	1.967	0.018	0.419	
Spring	High	0.552	1.561	0.007	0.225	
Summer	High	0.627	1.722	0.011	0.168	
Fall	High	0.597	0.671	0.012	0.852	
Fall ⁸	Low	0.966	18.477	5.19	15.88	

Table 2.3 Bad Creek 1 Seasonal Unit Operations

		Probability Not	Lo	Log Normal Shape Parameters			
Unit	Season	Operating	shape	location	scale	Months	
	Winter High	0.175	0.226	-9.037	15.014	12,1,2	
	Spring High	0.247	0.011	-249.468	255.914	3,4,5	
U1	Summer High	0.045	0.004	-610.193	618.06	6,7,8	
	Fall High	0.240	0.097	-20.237	27.214	9,10,11	
	Fall Low	0.240	0.097	-20.237	27.214	9,10,11	

⁸ The period of low elevation for this analysis only occurred in the Fall, as depicted in Table 2.3.

		Probability Not	Log	Log Normal Shape Parameters		
Unit	Season	Operating	shape	location	scale	Months
	Winter High	0.248	0.354	-3.728	9.652	12,1,2
	Spring High	0.368	0.031	-74.131	80.674	3,4,5
U2	Summer High	0.059	0.006	-347.383	355.431	6,7,8
	Fall High	0.217	0.442	-1.769	8.998	9,10,11
	Fall Low	0.217	0.442	-1.769	8.998	9,10,11
	Winter High	0.307	0.126	-17.456	23.149	12,1,2
	Spring High	0.449	0.010	-238.518	244.828	3,4,5
U3	Summer High	0.092	0.003	-751.043	758.749	6,7,8
	Fall High	0.146	0.039	-56.370	62.818	9,10,11
	Fall Low	0.146	0.039	-56.370	62.818	9,10,11
	Winter High	0.350	0.209	-9.370	15.605	12,1,2
	Spring High	0.438	0.052	-44.005	51.045	3,4,5
U4	Summer High	0.089	0.004	-469.695	477.749	6,7,8
	Fall High	0.209	0.066	-31.032	37.785	9,10,11
	Fall Low	0.209	0.066	-31.032	37.785	9,10,11

Note: It is assumed Bad Creek is operated the same under 'Normal' and 'Low' forebay elevation scenarios.

2.4 Vulnerability to Entrainment

The second component of an ERA is to objectively assess the vulnerability of those species subjected to entrainment. Large impacts to highly vulnerable species carry the most risk to population impacts. As such, an assessment of species vulnerability characteristics becomes an important component of this analysis. Cada and Schweizer (2012) developed a traits-based assessment (TBA) to estimate fish population sustainability for data poor fish populations. This qualitative assessment extended experimental results from tested fish species to predict passage survival of other untested species based on phylogenic relationships or ecological similarities. The concepts of the Cada and Schweizer (2012) TBA and the Patrick et al. (2009) ePSA were used as a framework for assessing vulnerability. However, a straightforward quantitative approach was used for assessing fish population sustainability. Specifically, fish population growth rates were used for each species to evaluate a population's ability to make up for turbine passage losses with compensatory mechanisms. If these compensatory mechanisms are not enough to overcome losses, the fish population sustainability is vulnerable to entrainment stressors.

The sustainability of fish populations is influenced by several demographic traits. These traits include natural life span, natural mortality rates, generation time or interval between reproductive events, the number of reproductive events per year, and the number of offspring per reproductive event (Cada and Schweizer 2012). Species that have a low natural mortality rate, short generation time, and produce a large number of eggs are less likely to experience population level effects. Patrick et. al. (2009) also incorporated the individual growth rate (von Bertanlaffy) and trophic level in their assessment of vulnerability. These traits all impact how quickly a population will increase in number when it is depleted, meaning when the population is not nearing the carrying capacity in the local environment.

Both the ePSA and TBA methods used a set of traits and combined them into a qualitative categorization of vulnerability. However, quantitative estimates of the combined impact of these population traits are available in the literature for many species in the form of population growth rates or doubling rates for depleted populations. By using these estimates directly, subjective selection of traits to include and subjective methodology for weighting the importance of each individual trait can be avoided. Rather, the traits have been incorporated into well-established population modeling techniques and the overall estimate has been objectively and quantitatively derived.

Population growth for a harvested (or in this case, potentially entrained) population of fish can be described on annual increments using the Schaeffer Model:

$$N_{t+1} = N_t + r \left(1 - \frac{N_t}{\kappa}\right) N_t - E_t,$$

where

 N_t = population size in year t;

K = carrying capacity of population;

 E_t = entrainment losses in year t; and

r = discrete population growth rate

If it is assumed the population is depleted relative to the carrying capacity, then this equation simplifies to:

$$N_{t+1} \approx N_t(1+r) - E_t.$$

If entrainment loss as the fraction of the population lost (PL; $E_t = PL \times N_t$,) is reparametrized, then:

$$N_{t+1} \approx N_t(1+r-PL)$$
.

Thus, if the entrainment loss rate (PL) is greater than the discrete population growth rate (r), the local population may decline over time.

The discrete population growth rate (r) for each species of concern was derived from information on FishBase (Froese and Pauly 2021), from model-derived resilience factors for the exact or in some cases, a surrogate species. In the FishBase "Estimates based on models" section, the following was used:

1) "K", which is presumed to be the intrinsic population growth rate for depleted populations. The intrinsic growth rate (K) is related to the discrete growth rate as follows:

$$\exp(K) = (1+r).$$

K is not reported for all species; when not reported for a species of concern, surrogates were identified that were primarily based upon taxonomic linkages (Table 2.3).

2) "Population doubling time", which is reported as a categorical range for all species (i.e., three presumed ranges for low resilient, moderate resilient, and high resilient species)⁹. The population doubling time (D) is related to the discrete population growth rate as follows:

$$(1+r) = \exp\left(\frac{\ln(2)}{D}\right).$$

Both of these estimates are reported for (1+r) and the most conservative result from each range of values, the lower discrete population growth rate, was used as an estimate for species vulnerability.

2.5 Assigning Risk

With quantitative measures estimating the number of fish entrained and the expected number of mortalities, and a quantitative index expressing the relative vulnerability of those species impacted, it is possible to objectively assign risk categories and identify the species most at risk.

_

⁹ FishBase defines resilience as "the capacity of a system to tolerate impacts without irreversible changes in its outputs or structure. In species or populations, often understood as the capacity to withstand exploitation." (Froese and Pauly 2021). FishBase reports resiliency as very low, low medium, or high. Resiliency ranges for species analyzed within this report were sourced directly from FishBase.

In order to estimate the annual proportion of the population in Lake Jocassee lost to entrainment (PL), an estimate of the local population size of each species (i.e., the denominator of PL) is needed. An annual baseline population estimate of pelagic forage fish (i.e., Blueback Herring, Threadfin Shad) was sourced from pelagic hydroacoustic monitoring surveys conducted by Duke Energy from 1989 to 2020 (A. Stuart, personal communication, October 2021). With 30 years of observations, any evidence of long-term trends was assessed that may indicate Bad Creek Project having an effect on the population. From 2013 to 2015, Duke Energy also conducted complimentary purse seine sampling to characterize the pelagic population of fish and quantify the proportion of the pelagic population comprised of Blueback Herring vs Threadfin Shad.

The combined annual population size estimates are skewed with more variance apparent for higher estimates. On the log-scale, there appears to be an approximate 20-year population cycle within Lake Jocassee (Figure 2.1). The median population estimate over the past 20 years (2001-2020) was estimated to capture an expected population size for a random future year. Estimated PL for each species was the annual estimated entrainment mortality divided by this population size estimate.

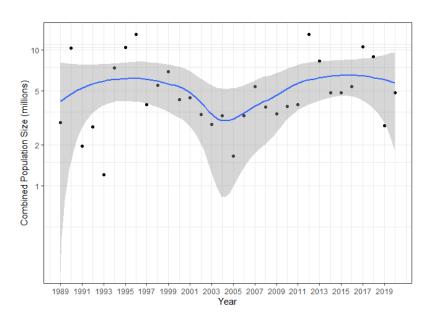


Figure 2.1 Estimated Local Population Size (Combined Species) 1989-2020, with Local Regression Smoother Trend Estimate Overlaid

A tabular form of (1+r-PL) is reported for each facility and flow scenario. Values of (1+r-PL) of exactly one would indicate steady population, greater than 1 indicates population growth, and less than 1 would indicate the population is being impacted by entrainment.

3.1 Exploratory Data Analysis

3.1.1 Analysis of Lake Jocassee Elevation

Elevations remained relatively consistent with an average level of 97.6 feet in 1991, 98.4 feet in 1992, and 92.4 feet in 1993 (Table 3.1). The average forebay elevation across all years was 96.3 feet, with a median of 98.0 feet. The forebay elevation did not exceed 100.0 feet and did not fall below 81.4 feet. The standard deviation of the entire dataset was 4.46, higher than the standard deviation of data from 1991 (0.988) and 1992 (0.771) suggesting 1993 was influential.

Table 3.1 Statistical summary of Lake Jocassee forebay elevation data from 1990-1993(measured in feet local datum)

Time	Minimum	Max	Mean	Standard Deviation	Median
1991-1993	81.40	99.80	96.32	4.46	97.95
1991	92.10	99.20	97.60	0.98	97.80
1992	95.00	99.80	98.51	0.77	98.60
1993	81.40	99.80	92.40	6.43	95.30

Histograms confirm the heavy skew of the data with two potential forebay elevation operating modes. Figure 3.1 represents the elevation data from 1991-1993, which was heavily skewed towards the higher elevations with a small cluster at the lower elevations. The cluster of low elevations occurred in 1993. Similar to Figure 3.1, the 1991 elevation data (Figure 3.2) also displays an uneven distribution. A multimodal distribution is evident with cluster of elevations around the 88.6-89.6 values and another cluster in the 97.6-98.6 values. Figure 3.3 contains forebay observations from 1992, and Figure 3.4 from 1993. In 1993, more so than any other year, there was a large proportion of lower elevation observations, suggesting two operational modes (low and high elevation).

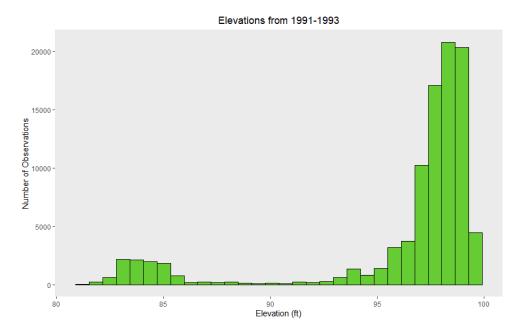


Figure 3.1 Jocassee Forebay local datum elevation observations from 1991-1993

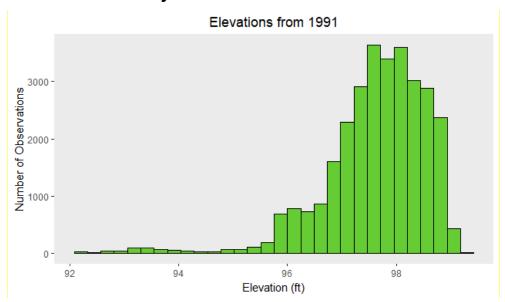


Figure 3.2 Jocassee Forebay local datum elevation observations in 1991

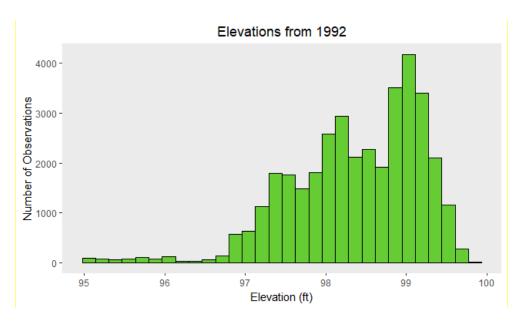


Figure 3.3 Jocassee Forebay local datum elevation observations in 1992

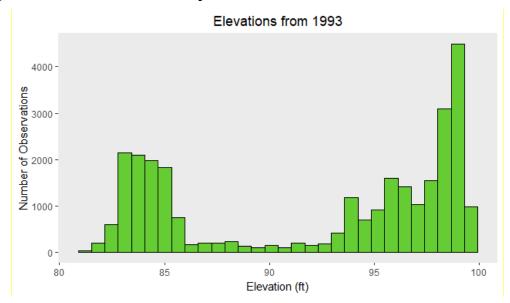


Figure 3.4 Jocassee Forebay local datum elevation observations in 1993

3.1.2 Analysis of Entrainment Rates

For the entrainment rate analysis, Kleinschmidt computed daily entrainment rates, and then separated the dataset into two categories: entrainment at elevations greater than 89 feet (1,099.0 ft msl) and entrainment at elevations less than or equal to 89 feet (1,099.0 ftmsl). The histogram (Figure 3.6) of the daily max entrainment at elevations below 89 feet (1,099.0 ftmsl) shows a heavy skew to the left, although most observations are greater than 0, indicating a higher entrainment rate than shown in Figure 3.5. This is supported

by the statistical summary in Table 3.3, where we see a large difference between the median of 7.5 and the mean of 18.4.

Figure 3.7 contains a histogram of daily entrainment rates at elevations greater than 89.0 feet. Like the trend in Figure 3.5, these data are also heavily skewed to the left, except most observations were 0 fish/Mft³, indicating less entrainment at higher elevations. The median value of 0.7 and mean of 3 (Table 3.3) are closer together than the other elevation group. The standard deviation of entrainment rates at elevations less than or equal to 89 feet was high at 34.6 (Table 3.3) as compared to the standard deviation of 5.73 at elevations greater than 89 feet indicating there were more observations closer together at the lower elevations.

Table 3.2 Statistical summary of daily entrainment data (fish/Mft³) by year

Time	Minimum	Maximum	Average	Standard Deviation	Median
1991-1993	0.02	250.30	5.39	15.34	1.10
1991	0.05	44.20	7.91	6.44	8.06
1992	0.04	13.20	0.90	1.46	0.45
1993	0.02	250.30	7.97	25.00	0.92

Table 3.3 Statistical summary of entrainment rate by forebay elevation operation mode.

Operation Mode	Minimum	Maximum	Average	Standard Deviation	Median
>89 ft	0	44.17	3.10	5.73	0.72
≤ 89 ft	0	250.27	18.41	34.59	7.54

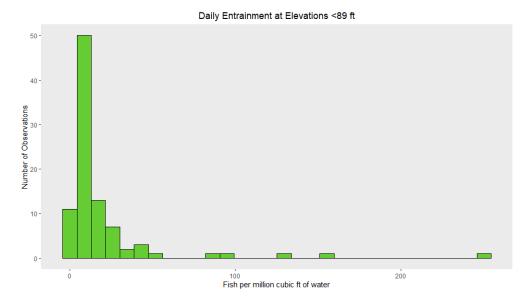


Figure 3.5 Daily entrainment at elevations less than 89 ft

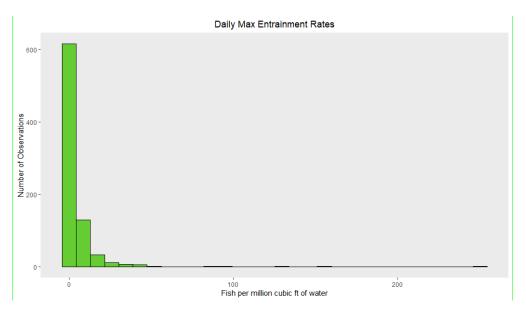


Figure 3.6 Daily Entrainment Rates from 1991-1993

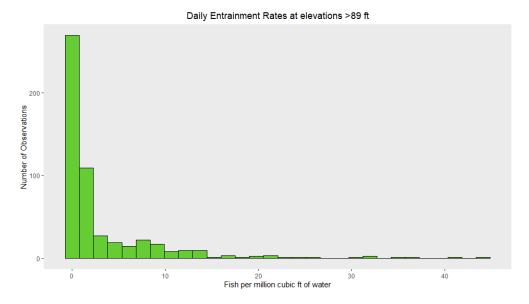


Figure 3.7 Daily entrainment at elevations greater than 89 ft

3.1.3 Analysis of Temperature Data

For the temperature analysis, the number of values was much lower than the other data sets. However, as seen in Table 3.4, the mean and median temperatures in degrees Celsius (C) were close, meaning there were few outliers, and the distribution of data is symmetrical. Further, temperature did not vary much within a day, meaning imputing temperature values for every entrainment observation proved highly accurate. The highest mean temperature was 24.7 degrees C, with the lowest being 9.1 degrees C. Typical seasonal variation is shown in Figure 3.8 where the highest temperatures are in the summer and lowest in the winter.

Table 3.4 Statistical summary of temperature data (C)

Time	Minimum	Maximum	Mean	Standard Deviation	Median
1991-1993	9.14	24.70	16.47	5.30	16.29
1991	9.14	24.70	16.80	5.53	16.64
1992	10.21	24.03	16.54	5.17	16.29
1993	9.15	24.67	16.06	5.62	15.32

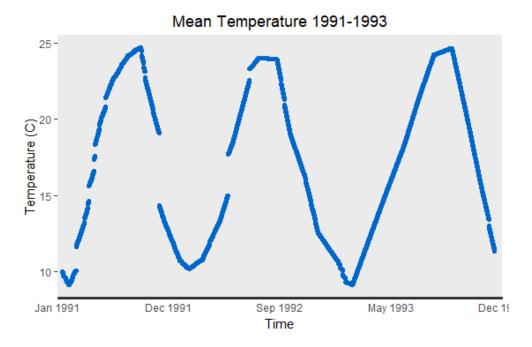


Figure 3.8 Lake Jocassee Mean daily temperature (C) from 1991-1993

3.1.4 Analysis of Hours Operated Per Unit

Duke Energy provided Bad Creek operations data that reflect the anticipated operations based on the solar market (2014 – 2018). It is assumed that Bad Creek I will continue to operate in this manner, and that operations between units are conditional. Bad Creek I operates on a 'first-on last-off' procedure, where U4 is first, followed by U2, then U3, and finally U1. When Bad Creek II is operational, it will be operated in the same manner as Bad Creek I, but Bad Creek II will run first to optimize use of variable speed pumps. It is assumed that BC2 U4 = BC1 U4, etc. A summary of statistics of hours operated by unit is included in Table 3.5.

Table 3.5 Bad Creek Unit 1 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	19.00	5.34	4.09	5.25
Spring	0	16.80	4.41	3.89	5.25
Summer	0	13.00	7.65	2.95	8.25
Fall	0	17.80	5.13	4.12	5.75

Table 3.6 Bad Creek Unit 2 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	17.50	4.58	3.67	5.00
Spring	0	16.80	3.91	3.87	5.00
Summer	0	13.00	7.65	2.99	8.25
Fall	0	18.00	4.91	3.65	5.75

Table 3.7 Bad Creek Unit 3 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	16.80	4.41	3.68	4.75
Spring	0	14.20	3.79	3.67	4.50
Summer	0	12.50	7.39	2.75	8.00
Fall	0	16.50	5.85	3.16	6.25

Table 3.8 Bad Creek Unit 4 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	24.00	4.83	4.20	5.00
Spring	0	16.50	3.89	4.30	0.75
Summer	0	13.00	7.86	2.83	8.25
Fall	0	17.20	6.18	3.23	6.25

To simulate hours pumping per day, each unit's observations were fit to a log normal distribution. It was assumed that Bad Creek was operating under the MOU scenario and that the hours a unit operates is conditional on the order of operations. Thus, if U4 is preferred, the number of hours U2 is operated is conditional on the number of hours U4 is operated. The simulation first draws from a log normal distribution fit to U4 hours. Then, U2 hours are filtered to less than or equal to the number of hours U4 is operated. The remaining U2 data are fit to a log normal distribution, and another draw simulates hours operated for U2. This process is repeated for U3 and U1, with the current unit always dependent upon the previous unit's operation. This type of simulation preserves the first-on last-off operations of preferred units. If the Jocassee Forebay elevation is above 1099 ft MSL, the units could be operated in any order.

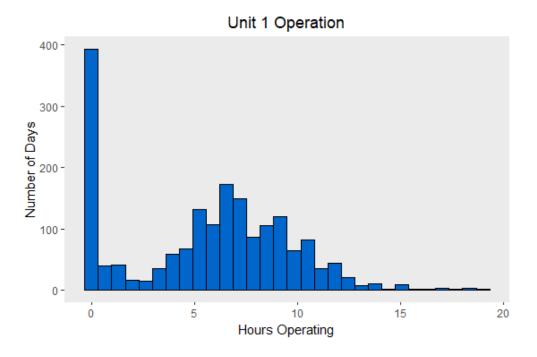


Figure 3.9 Unit 1 Operation

Note: the frequency of days with no operations (0 hours) was included in the histogram, but removed when fitting a log normal distribution. There are a considerable number of days (\sim 400) where Unit 1 did not run from 2014 – 2018.

Figure 3.10 Unit 2 Operation

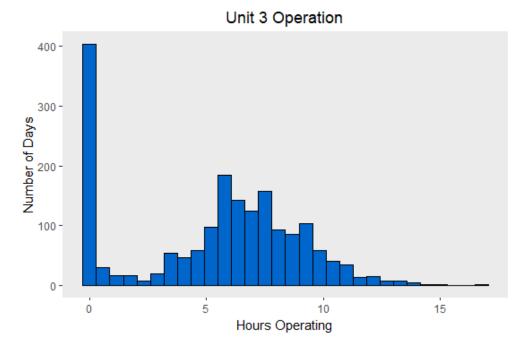


Figure 3.11 Unit 3 Operation

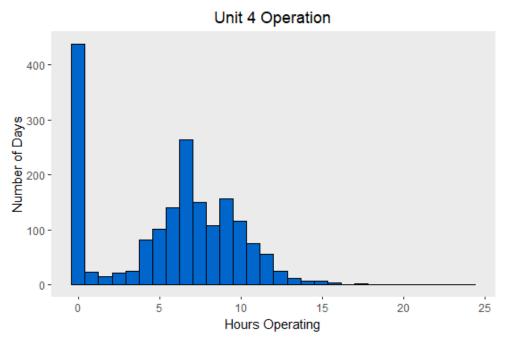


Figure 3.12 Unit 4 Operation

3.1.5 Entrainment as a Function of Elevation

Figure 3.13 shows the instantaneous forebay elevation and entrainment rate from 1991-1993. As shown, elevations remained relatively consistent with a mean elevation of 97.6 feet in 1991, 98.5 feet in 1992 and 92.4 feet in 1993. An increase in entrainment is expected as the forebay elevation drops. Overall, the data are highly skewed, with a large gap between the average daily max entrainment and the median values.

In 1991 (Figure 3.14) there was more variation in elevation, and a maximum instantaneous entrainment rate of 20.1 fish/Mft³. Entrainment was high for the first half of the year until July. In 1992, there was no apparent trend with elevation (Figure 3.15). The data from Figure 3.16 show the lowest entrainment values, lowest yearly maximum entrainment rate of 418 fish/Mft³ of water, and the lowest average entrainment at 1.57 fish/Mft³. These values could be attributed to rain because 1992 was the wettest year out of this data set with a yearly total of 28.6 inches of precipitation with an average forebay elevation of 98.5 feet (1108.5 ft msl). The highest daily maximum entrainment at 978 fish/Mft³ occurred in 1993 (Figure 3.16). When comparing elevation to temperature there was no clear trend as the same seasonal temperature pattern was observed regardless of elevation (Figure 3.17).

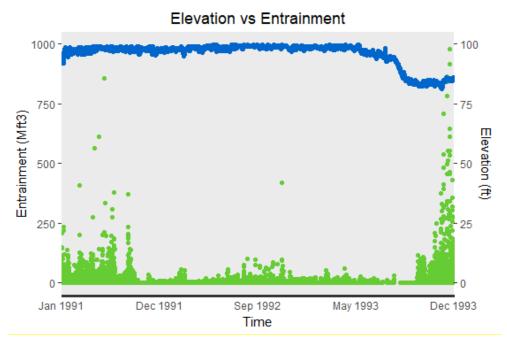


Figure 3.13 Instantaneous elevation and entrainments rate from 1991-1993, green represents the entrainment observations and blue represents the forebay elevation observations.

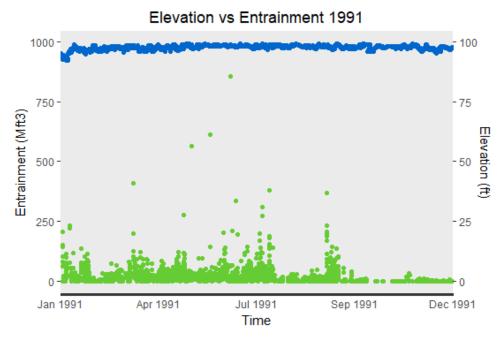


Figure 3.14 1991 Instantaneous elevation and entrainment rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

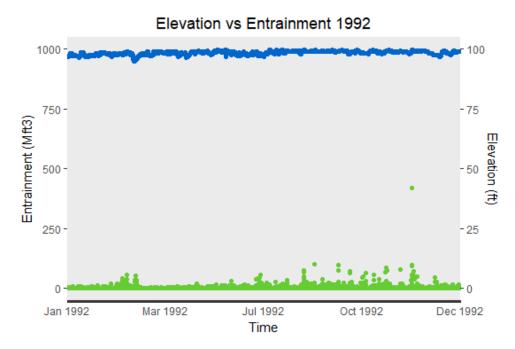


Figure 3.15 1992 Instantaneous elevation and entrainments rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

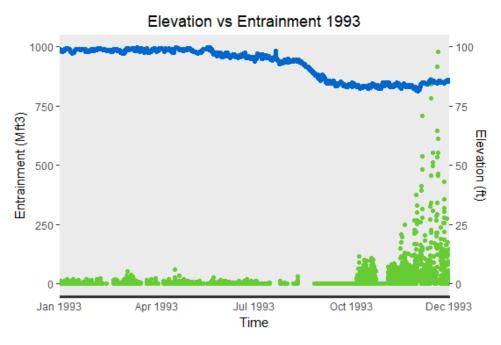


Figure 3.16 1993 Instantaneous elevation and entrainments rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

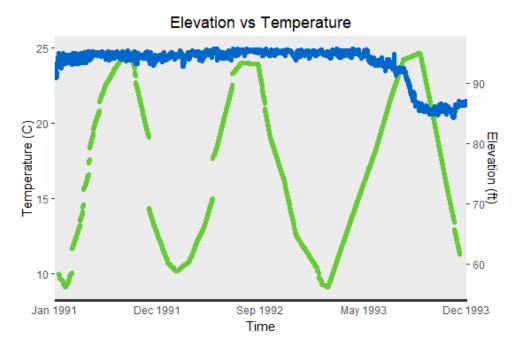


Figure 3.17 Comparison of elevation and temperature data from 1991-1993, with green being temperature and blue being forebay elevation.

3.2 Entrainment Impact

Simulations of operating scenarios were run at different forebay elevations in different seasons to assess entrainment impact at the Bad Creek Project. Table 3.9 shows the statistical summary of the number of fish entrained per day over the entire simulation dataset. Kleinschmidt began simulations with the forebay elevation at "high" level defined as forebay elevations greater than 89 feet. Then ran simulations when the forebay elevation was at a "low" level defined as forebay elevations less than 89 feet (1099 ftmsl). Table 3.10 contains statistics on the median number of organisms entrained and the likelihood of entraining 10, 100, or 1000 fish in any one event. The probability of 10 fish being entrained at once when elevations are low in the fall was 56.4%, probability of 100 being entrained was 50.6% and probability of 1000 fish being entrained was 44.8%. However, when compared to Fall at high level, when only 16,977 fish are entrained on average, the probabilities are similar. When entrainment is occurring at low elevations, the events are much larger than events at other seasons and high operating levels. The median entrainment of fish was nearly 3x as much during low forebay elevation as it was during high operating elevations in the Fall. The median entrainment in the Fall during normal pond levels was just under 17,000 fish, with a small increase in winter to 18,344 fish, another increase in spring to 23,389 fish, and then summer with 32,684 fish.

Table 3.9 Statistical Summary of data from all elevation and seasonal scenarios within simulation

Minimum	Maximum	Mean	Standard Deviation	Median
0	5111	149.484	316.143	27

Table 3.10 Entrainment impact and likelihoods by season.

Season	Forebay level	Median Entrained	Probability 10 entrained	Probability 100 entrained	Probability 1000 entrained
Winter	High	18,344	0.512	0.445	0.380
Spring	High	23,389	0.19	0.09	0.04
Summer	High	32,684	0.56	0.48	0.40
Fall	High	16,977.5	0.54	0.43	0.33
Fall	Low	46,052.5	0.56	0.51	0.45

Table 3.11 Statistical summary of daily entrainment by season

Season	Forebay	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	High	0	4292	100.25	252.44	20
Spring	High	0	4013	127.07	294.92	22
Summer	High	0	5111	178.18	396.26	39
Fall	High	0	1840	91.98	171.43	29
Fall	Low	0	4480	250.30	381.35	0

As shown in Figure 3.18 through Figure 3.22, the highest probability of entraining fish was during the Fall at low forebay levels. Fall season operating at low levels had the highest average entrainment and second highest standard deviation, meaning that there were a higher number of elevated entrainment events during simulations as well as those events being highly variable.

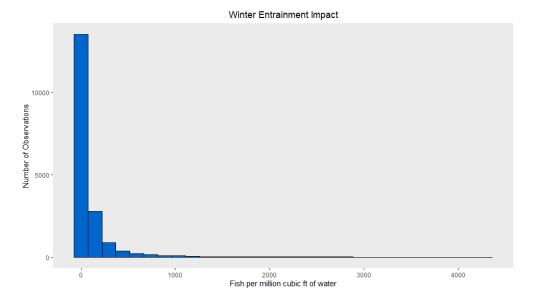


Figure 3.18 Winter Daily Entrainment Impact

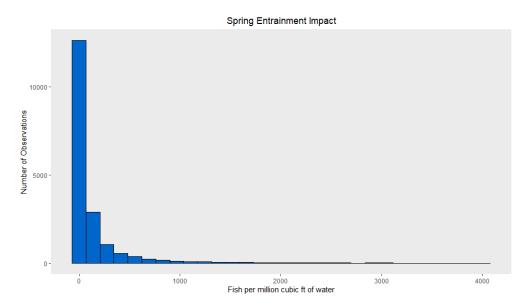
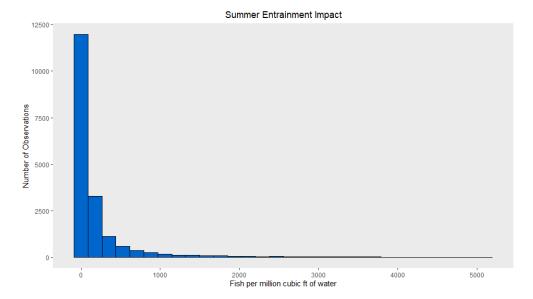



Figure 3.19 Spring Daily Entrainment Impact

Figure 3.20 Summer Entrainment Impact

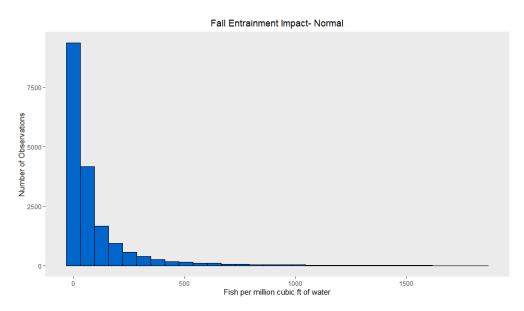


Figure 3.21 Fall Entrainment Impact-High Operating Level

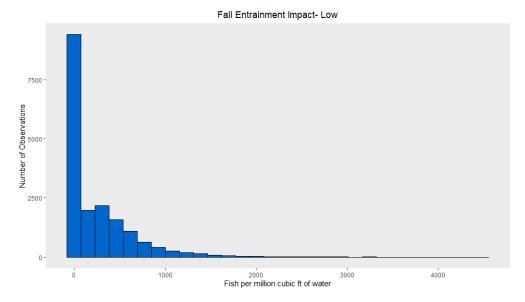


Figure 3.22 Fall Entrainment Impact-Low Operating Level

3.3 Relative Vulnerability to Entrainment

As there was no substantial increase between entrainment estimates, the previous assessment of vulnerability was used. A summary of FishBase parameters used for the entrainment vulnerability assessment are provided in Table 3.12. Both Blueback Herring and Threadfin Shad are considered moderately vulnerable species with population doubling times in the 1.4-4.4 year range. The intrinsic growth rate estimated for Blueback Herring indicates that this species is moderately vulnerable, with a discrete annual increase of about 20% per year. The intrinsic growth rate was not available for Threadfin Shad, but surrogate Alosines have estimated discrete annual increases of approximately 15-35% per year (Table 3.13).

Table 3.12 Population Growth Rates Used for Vulnerability Assessment

	Para	meters f	rom Fish	Base	Derived discrete growth rate (r)						
	Intrinsic Population Growth Rate (K)		popu doubli	gorical llation ng time D)	-	cies- cific	Categorical				
Species	Min	Max	Min	Max	Min	Max	Min	Max			
Blueback Herring	0.18	0.18	1.40	4.40	1.20	1.20	1.17	1.64			
Threadfin Shad*			1.40	4.40			1.17	1.64			
American Shad	0.14	0.14			1.15	1.15					
Alewife	0.20	0.20			1.22	1.22					
Blueback Herring	0.18	0.18			1.20	1.20					
Hickory Shad	0.30	0.30			1.35	1.35					

^{*}Intrinsic rate was not available in FishBase for Threadfin Shad but was available for the four North American Freshwater Alosines listed here.

3.4 Entrainment Risk

The risk results for Bad Creek Project for Blueback Herring and Threadfin Shad are presented in Table 3.13. The losses to Blueback Herring are relatively small compared to the population numbers, and the risk estimate is low (i.e., discrete population annual growth is estimated to be 16-19% after accounting for entrainment). Threadfin Shad is more heavily impacted, with approximately 12% of the estimated population lost each year to entrainment. According to these estimates, the population should still be sustainable, with estimated discrete annual increases in population ranging from 3% (based on American Shad population growth estimates) to 23% (based on Hickory Shad population growth estimates). The low end of this range, a 3% population growth rate, is low and corresponds to a population doubling rate of more than 20 years.

Table 3.13 Bad Creek Entrainment Risk to populations of fish inhabiting Lake Jocassee

Species	Categorical discrete growth rate (min)	Species- specific discrete growth rate (min)	Estimated Population 2001-2020 (millions)	Annual Entrainment Loss Estimate	Proportion of Annual Population Lost to Entrainment (PL)	Annual population multiplier including entrainment (categorical)	Annual population multiplier including entrainment (species-specific)
Blueback							
Herring	1.17	1.20	3.7	0.03	0.00	1.16	1.19
Threadfin Shad	1.17		0.52	0.06	0.12	1.05	
American Shad		1.15					1.03
Alewife		1.22					1.10
Blueback							
Herring		1.20					1.08
Hickory Shad		1.35					1.23

4.0 CONCLUSION

Based on the exploratory analysis and simulation, if Lake Jocassee operates at a lower elevation there will be a risk of higher entrainment. Fluctuation in forebay elevations could increase risk of entrainment. Figure 3.17 depicts water temperature on the secondary y-axis. When water temperature and forebay elevation were high in the fall, entrainment was low, but when temperature was high and forebay elevation was low, entrainment was high.

There were numerous differences between this analysis and the previous analysis that have affected the results. The previous analysis (Kleinschmidt 2021) listed annual entrainment at 87,324, while there were 91,394 fish entrained in this analysis during normal operating years and up to 120,469 individuals in years with low operating forebay elevations in the fall. The previous analysis used instantaneous entrainment rates, while the current analysis uses daily entrainment rates. Use of daily entrainment rates provides higher resolution because entrainment is episodic, and high entrainment rates are not expected to occur for an entire pumping cycle. Rather than running for six hours every day, this analysis simulated hours operating per day with a log normal distribution fit to operations data that reflect solar operations. Therefore, days with long duration of operations occur with the same relative frequency in the simulation and actual operations.

The estimated rates of entrainment mortality at the Bad Creek Project are not expected to affect the long-term sustainability of Lake Jocassee fish populations. The species with the largest impact, Blueback Herring and Threadfin Shad, have relatively high fecundity, meaning that population-level compensatory mechanisms would likely offset the entrainment losses in terms of effects on these fish populations. In addition, while some level of entrainment mortality will inevitably occur, many natural populations have excess reproductive capacity that will compensate for some losses of individuals (Sale et al. 1989).

Using a risk assessment framework allows for an objective evaluation of risks to fish populations from entrainment by combining two components, an estimate of entrainment loss and an estimate of population vulnerability to that expected loss for each species impacted. The risk estimate used was the expected population increase in each year after accounting for the entrainment losses. The population increases were based on minimum discrete population growth rates for each species sourced from FishBase.

No expected risk to Blueback Herring was indicated because the estimated entrainment rate of 0.7% per year is substantially below the expected recovery rate of the species. We anticipate a moderate potential risk to Threadfin Shad that is higher when forebay elevations are low with entrainment losses predicted to be approximately 12% of the median population estimate for the past 20 years. Threadfin Shad is considered to be a moderately vulnerable species with moderate population recovery, and this category of fish is expected to have discrete population growth rates of 17-64% per year. Although no species-specific growth rates were found for Threadfin Shad, the estimated rates for the surrogate species ranged from 15% per year for American Shad to 35% per year for Hickory Shad. The expected entrainment rate of 12% for Threadfin Shad is close to the expected annual increase for the slowest recovery surrogate, American Shad, indicating that entrainment mortality may keep the population from substantial increase, but is not likely to cause the population to decrease, unless combined with other impacts.

5.0 REFERENCES

- Cada G.F. and Schweizer P.E. 2012. The Application of Traits Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations. Oak Ridge, TN: Oak Ridge National Laboratory Technical Report. 36 pp.
- Cortés, Enric, Freddy Arocha, Lawrence Beerkircher, Felipe Carvalho, Andrés Domingo, Michelle Heupel, Hannes Holtzhausen, Miguel N. Santos, Marta Ribera, and Colin Simpfendorfer. 2010. Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquatic Living Resources (EDP Sciences) 23: 25-34.
- Electric Power Research Institute (EPRI). 1997. Turbine entrainment and survival database field tests. Prepared by Alden Research Laboratory, Inc., Holden, Massachusetts. EPRI Report No. TR-108630. October 1997.
- Froese, R. and D. Pauly (Editors). 2021. FishBase. World wide web publication. www.fishbase.org, version (06/2021).
- Furlong-Estrada, Emmanuel, Felipe Galván-Magaña, and Javier Tovar-Ávila. 2017. Use of the productivity and susceptibility analysis and a rapid management-risk assessment to evaluate the vulnerability of sharks caught off the west coast of Baja California Sur, Mexico. Fisheries Research 194: 197-208.
- Kleinschmidt Associates (Kleinschmidt). 2021. Desktop Entrainment Analysis: Bad Creek Pumped Storage Project (FERC No. P-2740). Prepared for Duke Energy. December 2021.
- Patrick, W.S., P. Spencer, O. Ormseth, J. Cope, J. Field, D. Kobayashi, T. Gedamke, E. Cortés, K. Bigelow, W. Overholtz, J. Link, and P. Lawson. 2009. Use of productivity and susceptibility indices to determine stock vulnerability, with example applications to six U.S. fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/SPO-101. 90 pp.
- Pontón-Cevallos, José F., Stijn Bruneel, Mar\in and José, R. Jarr\in, Jorge Ram\irez-González, Jorge R. Bermúdez-Monsalve, and Peter L. M. Goethals. 2020. Vulnerability and decision-making in multispecies fisheries: A risk assessment of bacalao (Mycteroperca olfax) and related species in the Galapagos' handline fishery. Sustainability 12: 6931.
- Ramos, Pedro L., Francisco Louzada, Eduardo Ramos, and Sanku Dey. 2020. The Fréchet distribution: Estimation and application-An overview. Journal of Statistics and Management Systems 23: 549-578.

- Sale, M.J., S.F. Railsback, S.Y Chang, C.C. Coutant, R.E. Spath, and G.H Taylor. 1989. Balancing hydropower development in the Ohio River basin. US Department of Energy. Report No. CONF-890876-1.
- van Treeck, Ruben, Johannes Radinger, Richard A. A. Noble, Franz Geiger, and Christian Wolter. 2021. "The European Fish Hazard Index An assessment tool for screening hazard of hydropower plants for fish." Sustainable Energy Technologies and Assessments. P. 43.

BAD CREEK PUMPED STORAGE PROJECT

(FERC NO. P-2740)

DESKTOP ENTRAINMENT ANALYSIS

ADDENDUM 1

INTRODUCTION

Duke Energy Carolinas, LLC (Duke Energy) retained Kleinschmidt Associates (Kleinschmidt) to conduct fish entrainment analyses in support of the relicensing of the Bad Creek Pumped Storage Project (Project; FERC No. 2740). These analyses were guided by discussions with the Aquatic Resources Committee and are detailed in the Desktop Entrainment Analysis Report (Rev. 2, November 2023) prepared by Kleinschmidt.

The November 2023 report (submitted with the Initial Study Report in January 2024 as Appendix B, Attachment 1) estimated that the Project could entrain between 90,825 and 119,208 fish annually, depending on meteorological conditions. Since the completion of that analysis, new unit technology information was made available regarding updated hydraulic capacities (i.e., increased pumping rates) for the proposed units at Bad Creek II (BCII) (i.e., variable-speed pump turbines). Additionally, unit upgrades to the existing four units at BCI were completed in March 2024, therefore, unit upgrades are reflective of current conditions. This addendum provides an updated assessment of the Project entrainment impact, taking into account the latest information on BCI upgraded and BCII updated pumping rates.

UPDATED ANALYSIS

Table 1 contains the original and upgraded pumping rates. The time period from 2014 to 2018 was utilized in the analysis as it is indicative of how Duke Energy intends to operate the Project in the future. Kleinschmidt fit a log normal distribution to seasonal operations data (2014 – 2018) to simulate future operations. However, due to the increased pumping rates while pumping the same volume of water, the actual number of hours operated at BCI and BCII will be much lower than previously expected.

To simulate future Project operations utilizing the same volume of water pumped as in 2014 – 2018, we have multiplied simulated hours operated by a coefficient. To derive the coefficient, we first assumed that all new and upgraded units would run for 6 hours each, which resulted in 773,280,000 cubic feet pumped. The original units at BCI would need to run for 14.55 hours each to pump the same volume of water. The upgraded units at BCI

and the proposed units at BCII would reduce operational times by 58.8%. Therefore, the coefficient applied to the simulated hours was 1 - 0.588 or 0.412.

Table 1. Original (as-constructed), upgraded (BCI), and updated (BCII) pumping rates at the Bad Creek Pumped Storage Project.

Unit	Original Pumping Rate (cfs)	Previously Modeled Pumping Rate (cfs) (Kleinschmidt 2023)	Upgraded Pumping Rate (cfs)
BCI Unit 1	3690	3690	4060
BCI Unit 2	3690	3690	4060
BCI Unit 3	3690	3690	4060
BCI Unit 4	3690	3690	4060
BCII Unit 5	N/A	3690	4890
BCII Unit 6	N/A	3690	4890
BCII Unit 7	N/A	3690	4890
BCII Unit 8	N/A	3690	4890

The calculated entrainment estimate (Table 2) aligns with previous assessments for the Project since the volume of water pumped remains the same.

Table 2. Seasonal entrainment estimates at the Bad Creek Pumped Storage Project using upgraded BCI and updated BCII pumping rates.

Species	Scenario	Median Number Entrained		
Fish	Bad Creek Fall Low Pond	45,574.5		
Fish	Bad Creek Fall Normal Pond	17,192.5		
Fish	Bad Creek Spring Normal Pond	22,702.5		
Fish	Bad Creek Summer Normal Pond	32,511.5		
Fish	Bad Creek Winter Normal Pond	18,419		

Under normal operational conditions, the annual entrainment estimate remains at 90,825 fish. During a drought year with a reduced forebay elevation, the annual entrainment estimate remains at 119,208 fish.

REFERENCES

Kleinschmidt. (2023). Revised Desktop Entrainment Analyses: Bad Creek Pumped Storage Project (FERC No. P-2740). Pittsfield, ME: Kleinschmidt Associates.

BAD CREEK PUMPED STORAGE PROJECT

(FERC NO. P-2740)

DESKTOP ENTRAINMENT ANALYSIS

ADDENDUM 2

INTRODUCTION

Duke Energy Carolinas, LLC (Duke Energy) retained Kleinschmidt Associates (Kleinschmidt) to perform fish entrainment analyses in support of the relicensing of the Bad Creek Pumped Storage Project (Project; FERC No. 2740). These analyses were guided by discussions with the Aquatic Resources Committee and are detailed in the revised Desktop Entrainment Analysis Report (November 2023) prepared by Kleinschmidt and included with the Initial Study Report (ISR).

The November 2023 report estimated that the Project could entrain between 90,825 and 119,208 fish annually, depending on meteorological conditions. Drought conditions were identified as contributing to higher entrainment rates (Kleinschmidt 2023). It was estimated that Threadfin Shad account for approximately 71% of the entrained organisms, totaling 64,485 to 83,445 fish per year, while Blueback Herring account for 14%, or approximately 12,715 to 16,688 fish per year.

In comments dated March 1, 2024, the Federal Energy Regulatory Commission (FERC) staff requested additional information regarding the revised Desktop Entrainment Analysis Report. Specifically, they noted:

"Section 2.4, Vulnerability to Entrainment, states that information on FishBase1 was used to derive discrete population growth rate (r) parameters for each species of concern. While FishBase can be used for this information, that information may be out of date and may not always be reflective of current literature. For the USR, please conduct a broader literature review (including both peer reviewed and gray/agency literature) to ensure the best available scientific data is being used for each species of interest to derive accurate population growth rate estimates for the entrainment analysis."

This addendum addresses FERC staff concerns by incorporating a more comprehensive literature review to ensure the best available data are used. It also provides additional insights into the effects of entrainment on the Threadfin Shad and Blueback Herring populations in Lake Jocassee.

SPECIES' LIFE HISTORY INFORMATION

THREADFIN SHAD

Threadfin Shad is a small, planktivorous pelagic fish common in rivers and reservoirs throughout the southeast U.S. that serves as forage prey for predator fish species. Although Threadfin Shad may mature during its first year, maturity typically occurs during its second year of life with a maximum age of four years (Jenkins and Burkhead, 1994; Rohde et al., 2009). Fecundity ranges from 6,700 to 36,509 eggs per female dependent on size and age of reproduction (LWB Environmental Services, 2012). Spawning typically occurs from April through July. Life history parameters for Threadfin Shad are presented in Table 1.

Table 1. Life history parameters for Threadfin Shad (LWB Environmental Services, 2012).

Stage	Daily Mortality	Duration (d)	Cumulative Mortality	% Mature	% Female	Start Weight (g)
Eggs	0.222	3	0.67	0	50	5.68 x 10 ⁻⁵
Larvae	0.178	27	4.79	0	50	5.68 x 10 ⁻⁵
Juveniles	0.0099	335	3.30	0	50	0.0612
Age 1	0.0082	365	3.0	50	50	8.8
Age 2	_*	365	_*	100	50	27.6

^{*}All fish are assumed to die before age 3 (EPRI 2012)

BLUEBACK HERRING

Blueback Herring is a small, planktivorous pelagic fish with a range extending from Nova Scotia south to northern Florida; abundance is greater in the southern portion of its range (USEPA, 2004). Although anadromous, landlocked populations of the species exist in inland reservoirs. Blueback Herring can live to 8 years old (USEPA, 2004; Rohde et al., 2009), although Jessop et al. 1983 reported a maximum age of 11 years. Males mature at ages 3 to 4 and females mature at ages 4 to 5 (USEPA, 2004). Fecundity ranges from 45,800 to 349,700 eggs per female dependent on size (USEPA, 2004). Life history parameters for Blueback Herring are presented in Table 2.

Table 2. Life history parameters for Blueback Herring (EPRI 2012).

Stage	Daily Mortality	Duration (d)	Cumulative Mortality	% Mature	% Female	Start Weight (g)
Eggs	0.0942	6	0.58	0	50	9.43 x 10 ⁻⁴
Yolk-sac Larvae	0.143	13	1.90	0	50	9.43 x 10 ⁻⁴
Post Yolk- sac Larvae	0.044	40	1.80	0	50	9.43 x 10 ⁻⁴
Juveniles	0.0207	306	6.50	0	50	0.0612
Age 1	8.22 x 10 ⁻⁴	365	0.3	0	50	7
Age 2	8.22 x 10 ⁻⁴	365	0.3	0	50	41
Age 3	8.22 x 10 ⁻⁴	365	0.3	0	50	92
Age 4	0.0041	365	0.73	50	50	144
Age 5	0.0041	365	1.5	100	50	188

METHODS

Methods used for additional entrainment analyses, as described below, have been derived from the information presented within the Introduction to this Addendum 2, as well as the life history parameters presented in Table 1 and Table 2.

To convert the daily mortality rates (see Table 1 and Table 2) to lifestage-specific survival rates, we can use the following relationship (equation 1):

$$S_i = e^{-Z_i}$$

Where S_i is the survival rate for life stage j, and Z_j is the stage-based instantaneous mortality rate for life stage i. Z_i can be calculated using the relationship:

$$Z_i = -\log_e(S_i) = d_i z_i$$

Where d_i is the duration of the stage i in days, and z_i is the daily instantaneous mortality rate for stage i. Given the daily mortality rate (z_i) and duration of each stage (d_i) we can calculate the lifestage specific instantaneous mortality rate Z_i . After calculating Z_i for each lifestage, we can then derive the survival rate (S_i) for each lifestage using equation 1. The intrinsic population growth rate (r) is the rate at which a population grows or decreases under ideal conditions with no migration. Table 1 has 4 lifestages with a

lifestage specific survival rate S_i from stage i to i + 1, and Table 2 has 9 life stages. With

 b_i representing the per capita birth rate (fecundity) for individuals in lifestage i, we constructed a Leslie matrix for each species to derive growth rate r:

$$L = \begin{bmatrix} b_1 & b_2 & b_3 & \cdots & b_n \\ S_1 & 0 & 0 & \cdots & 0 \\ 0 & S_2 & 0 & \cdots & 0 \\ 0 & 0 & S_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & S_{n-1} \end{bmatrix}$$

The square matrix is used to model the population growth of age-structured populations $(b_1 = \text{egg}, b_2 = \text{larvae}, b_3 = \text{juvenile}, b_4 = \text{adult year 1}, b_5 = \text{adult year 2}, \text{ etc.})$. The largest eigenvalue (λ) of the Leslie matrix is used to define the long-term growth rate r of the population with:

$$r = \ln(\lambda)$$

With the intrinsic population growth rate (r) known, we can use the Schaeffer model for estimating the population growth of a harvested (or entrained) population of fish to understand if entrainment loss is greater than the number of individuals entering the population. The Schaeffer model is given with:

$$N_{t+1} \sim N_t (1 + K) - E_t$$

Where N_{t+1} is the population in the next year, N_t is the population in Lake Jocassee in the current year, K is the discrete growth rate, and E_t represents the entrainment losses in year t. To translate the continuous growth rate r into the discrete growth rate K, we can use the relationship:

$$e^K = (1+r)$$

To assess the risk of population decline in Lake Jocassee, we performed a sensitivity analysis that altered fecundity in normal and dry years and among different reproductive scenarios. For Threadfin Shad, the three scenarios analyzed included 1) the conservative population estimate that fish spawn at year 1 and die before year 2; 2) where 5% of the population survives until year 2; and 3) where 4% of the population reaches maturity, spawn in year 0, and then again at year 1. For Blueback Herring, two reproductive scenarios were analyzed, a low and high fecundity model where 50% spawn at year 4 and 50% spawn at year 5.

RESULTS

The only difference between normal and dry years is the number of organisms entrained. The Leslie matrices of a fecundity scenario in a normal year will equal that of a fecundity scenario in a dry year. Results of the Leslie matrices are presented below, followed by the water year scenario population estimates.

LESLIE MATRICES

THREADFIN SHAD

The conservative low fecundity scenario produced the Leslie matrix found in Table 3A-F. The dominant eigenvalue (λ) was 1.005 suggesting that fecundity is adequate to provide a modest population growth rate (r) of 0.0053. The model that depicts 5% of the population surviving to spawn until year 2 produced the Leslie matrix in Table 3B. The dominant eigenvalue (λ) was 1.006, similarly suggesting that fecundity can adequately provide a modest population growth rate (r) of 0.0059. The low fecundity model that simulates 4% of the population spawning before year 0 and during year 1 produced the Leslie matrix in Table 3C. The dominant eigenvalue (λ) was 1.248 suggesting relatively high population growth rate (r) of 0.22.

The conservative high fecundity model produced the Leslie matrix provided in Table 3D. The dominant eigenvalue (λ) was 1.53 suggesting a relatively high population growth rate (r) of 0.429. The model that depicts 5% of the population surviving to spawn in year 2 with high fecundity produced the Leslie matrix in Table 3E. The dominant eigenvalue (λ) was 1.536 suggesting another high population growth rate (r) of 0.429. If 4% of juvenile Threadfin Shad mature and spawn within year 0, the representative Leslie matrix is provided in Table 3F. The dominant eigenvalue (λ) was 2.067 suggesting another high population growth rate (r) of 0.726.

Table 3. Threadfin Shad Fecundity Model

		Low	Fecuno	lity					Hig	ıh I	Fecur	ndit	у		
Conservative	A:							D:							
life history	0	0	C)	6,	700		0	0		0		36,5	509	
	0.513	0	C	0		0		0.513	0		0		0		
	0	0.00	8 0	0 0 0.036 0		0		0	0.00	8	0		0		
	0	0	0.0			0	0		0.0	36	0				
5% survive	urvive B:														
to spawn in	0	0	0	6,7	00	355		0	0		0	36,	509	1,8	25
year 2	0.513	0	0	()	0		0.513	0		0		0	0	1
	0	800.0	0	()	0		0	0.008		0		0	0	1
	0	0	0.036	()	0		0	0	0.	.036		0	0	1
	0	0	0	0.0	50	0		0	0		0	0.0	050	0	1
4% mature	C:							F:							
and spawn	0	0	26	8	6,	700		0	0		1,8	25	36,5	509	
in year 0	0.513	0	C	0		0		0.513	0		0		0		
	0	0.00	8 0	0		0		0	0.00	8	0)	0		
	0	0	0.0	36		0		0	0		0.0	36	0		

BI UFBACK HERRING

The low fecundity scenario produced the Leslie matrix provided in Table 4. The dominant eigenvalue (λ) was 1.005 suggesting there is just enough fecundity to provide a modest growth rate (r) of 0.0053. The high fecundity model produced the Leslie matrix shown in Table 5. The dominant eigenvalue (λ) was 1.48 suggesting a relatively high growth rate (r) of 0.392.

Table 4. Low Fecundity Leslie Matrix for Blueback Herring

0	0	0	0	0	0	0	22,900	22,900
0.568	0	0	0	0	0	0	0	0
0	0.156	0	0	0	0	0	0	0
0	0	0.172	0	0	0	0	0	0
0	0	0	0.002	0	0	0	0	0
0	0	0	0	0.741	0	0	0	0
0	0	0	0	0	0.741	0	0	0
0	0	0	0	0	0	0.741	0	0
0	0	0	0	0	0	0	0.224	0

Table 5. High Fecundity Leslie Matrix for Blueback Herring

0	0	0	0	0	0	0	174,850	175,850
0.568	0	0	0	0	0	0	0	0
0	0.156	0	0	0	0	0	0	0
0	0	0.172	0	0	0	0	0	0
0	0	0	0.002	0	0	0	0	0
0	0	0	0	0.741	0	0	0	0
0	0	0	0	0	0.741	0	0	0
0	0	0	0	0	0	0.741	0	0
0	0	0	0	0	0	0	0.224	0

POPULATION RESILIENCY

THREADFIN SHAD

In a normal water year, an estimated 64,485 Threadfin Shad would be entrained (E_t) while 84,636 would be entrained in a dry year. The estimated population of pelagic fish within Lake Jocassee is 5,430,000 fish (Personal Communication, Alan Stuart, 2021), while Threadfin Shad was found to contribute 12% of the pelagic population on average (Personal Communication, Alan Stuart, 2021). Using the best estimates available, 651,600 Threadfin Shad inhabit Lake Jocassee on an annual basis.

Table 6 presents the population in year 2 (N_{t+1}) for each life history and fecundity scenario in a normal water year. For this scenario, a population with low fecundity will decline, while a highly fecund population will still increase given the estimated entrainment impact at the Project.

Table 6. Threadfin Shad Population at Year 2 Fecundity Normal Water Year

Scenario	Low Fecundity	High Fecundity
Conservative life history	590,584	819,811
5% survive to and spawn in year 2	590,988	819,997
4% mature and spawn in year 0	717,602	942,793

Table 7 presents the population in year 2 (N_{t+1}) for each life history and fecundity scenario in a dry water year. As with a normal water year, populations with low fecundity will

decline, while those with high fecundity will still increase given the estimated entrainment impact at the Project.

Table 7. Threadfin Shad Population at Year 2 Fecundity Dry Water Year

Scenario	Low Fecundity	High Fecundity
Conservative life history	570,433	799,660
5% survive to and spawn in year 2	570,836	799,846
4% mature and spawn in year 0	697,451	922,641

BLUEBACK HERRING

In a normal water year, an estimated 12,715 Blueback Herring are entrained (E_t) while 16,688 would be entrained in a dry year. The estimated population of pelagic fish within Lake Jocassee is 5,430,000 fish (Personal Communication, Alan Stuart, 2021), with Blueback Herring accounting for 88% of the pelagic population on average (Personal Communication, Alan Stuart, 2021). Using the best estimates available, 4,778,400 Blueback Herring inhabit Lake Jocassee on an annual basis.

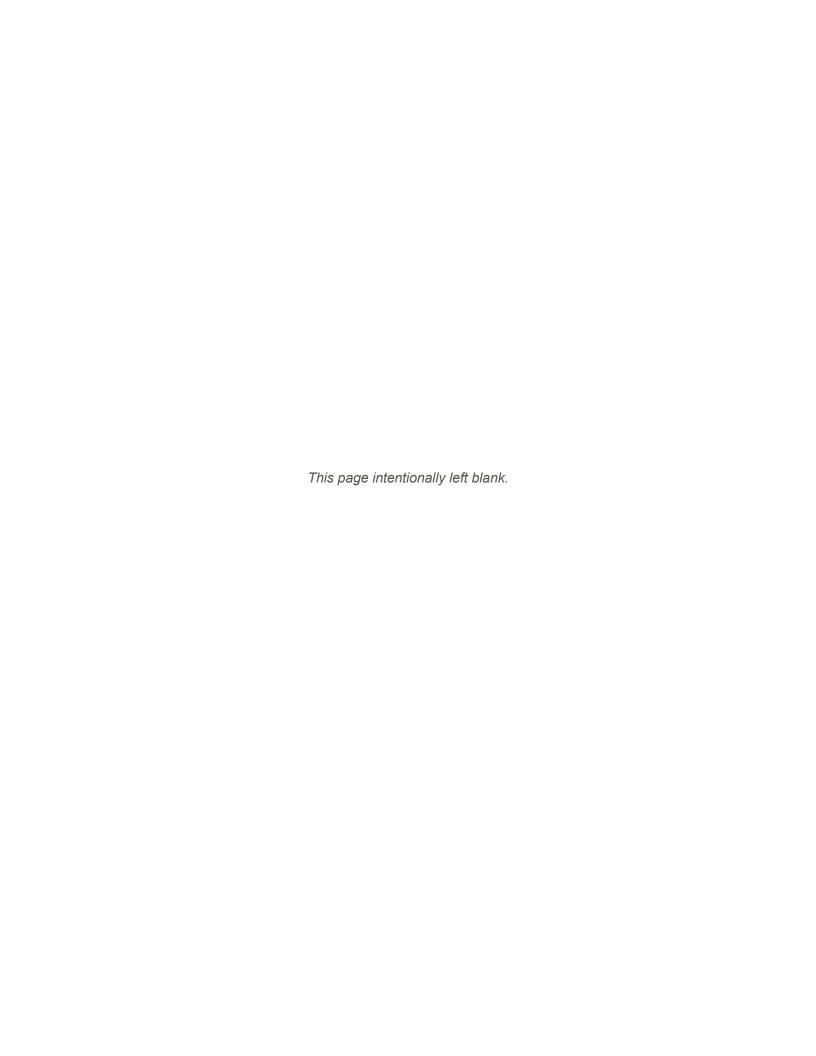
Table 8 contains the population in year 2 (N_{t+1}) for each fecundity scenario in normal and dry water years. Under both scenarios, the population is expected to increase despite the estimated entrainment impact at the Project.

Table 8. Blueback Herring Population at Year 2 for Low and High Fecundity, and Normal and Dry Year scenarios

Scenario	Low Fecundity	High Fecundity
Normal Water Year	4,736,248	5,582,275
Dry Water Year	4,732,274	5,578,302

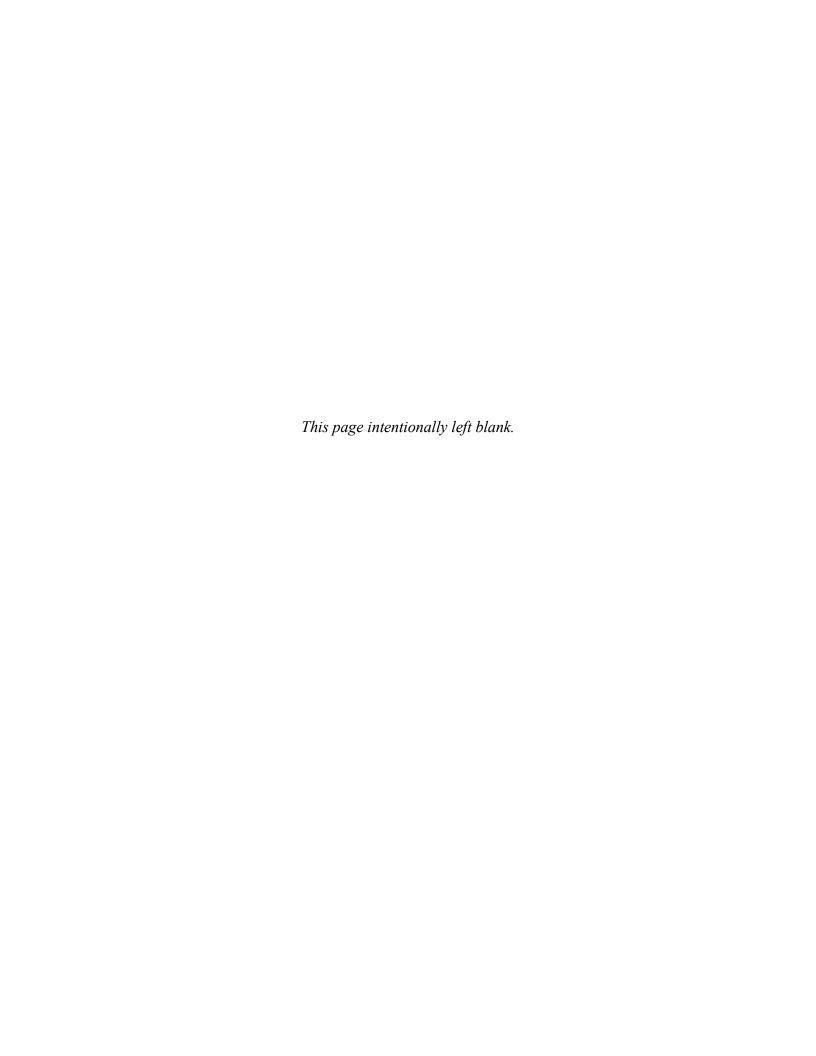
DISCUSSION AND CONCLUSION

For each life history and water year scenario analyzed for Threadfin Shad, the low fecundity model resulted in a declining population, while the high fecundity model demonstrated modest to substantial growth. Considering that Kleinschmidt (2021) found there to be a self-sustaining population with an approximate 20-year cycle, the actual fecundity measure for the Lake Jocassee population of Threadfin Shad is likely between 6,700 and 36,509 per female.


For Blueback Herring, both high and low fecundity models resulted in increasing population estimates for normal and dry water year scenarios. Our analysis suggests that the actual fecundity measure for Lake Jocassee Blueback Herring is likely between 22,900 and 175,850 per female, and the population of Blueback Herring would continue to increase despite entrainment impacts due to Bad Creek operations. While the life history parameters used in this model were associated with anadromous populations that have a longer life expectancy, landlocked populations are expected to mature earlier and not live as long. A secondary model was constructed that shortened the life expectancy and found a growth rate of 1.32 rather than 1.48. However, the population is still expected to grow after entrainment.

Kleinschmidt also described uncertainty around the annual entrainment estimate (Kleinschmidt 2021, 2023, 2024), suggesting that there is a possibility that very large (but infrequent) entrainment events could lead to a population decline in a particular year, especially during dry years. However, with such a large natural variation in fecundity (Kuklinski, 2006; Pablico, 2017) and compensatory density-dependence mechanisms, the population of pelagic fishes in Lake Jocassee is likely to rebound. Compensatory mechanisms occur when a population declines because there is less competition for resources, such as food and habitat. This leads to improved individual growth, survival, and greater reproductive success among the survivors. Improved individual growth means increased fecundity, and increased fecundity allows for an increase in population growth rates. This concept of maximum sustainable yield has been used to manage fisheries resources since the enactment of the Magnuson-Stevens Fisheries Conservation and Management Act in 1976. With an observed stable long-term population of pelagic fishes in Lake Jocassee, we are likely at or below maximum sustainable entrainment for Threadfin Shad and no noticeable population level impacts to Blueback Herring.

In 2024, Kleinschmidt concluded that the added operations of Bad Creek II would not substantially increase the number of entrained organisms because the overall volume of water pumped would remain the same. However, should future operations require a larger volume of water, additional population monitoring may be warranted.


REFERENCES

- Electric Power Research Institute (EPRI). (2012). Fish Life History Parameter Values for Equivalent Adult and Production Foregone Models: Comprehensive Update. EPRI, Palo Alto, CA: 2012. Technical Report 1023103.
- Jenkins, R.E. and N.M. Burkhead. (1994). Freshwater Fishes of Virginia. American Fisheries Society. Bethesda, MD.
- Jessop, B. M., Anderson, W. E., and Vromans, A. H. (1983). Life history data on alewife and blueback herring of the Saint Johns River, New Brunswick. Canadian Data Report of Fisheries and Aquatic Sciences No. 426.
- Kleinschmidt. (2021). Updated Desktop Entrainment Analyses: Bad Creek Pumped Storage Project (FERC No. P-2740). Pittsfield, ME: Kleinschmidt Associates.
- Kleinschmidt. (2023). Revised Desktop Entrainment Analyses: Bad Creek Pumped Storage Project (FERC No. P-2740). Pittsfield, ME: Kleinschmidt Associates.
- Kleinschmidt. (2024). Bad Creek Pumped Storage Fish Entrainment Analysis: Addendum 1. Pittsfield, ME: Kleinschmidt Associates.
- Kuklinski, K. E. (2006). Prolonged Spawing of Adult Threadfin Shad and Contribution of Age-0 Threadfin Shad as a Brood Source of Summer Larval Presence in Hugo Reservoir, Oklahoma. Proceedings of the annual Conference of the Southeast Association of Fish and Wildlife Agencies. 60, pp. 194-199. SEAFWA.
- LWB Environmental Services, Inc. (2012). Fish Life History Parameter Values for Equivalent Adult and Production Foregone Models: Comprehensive update. Palo Alto, CA: Electric Power Research Institute. Retrieved June 17, 2024.
- Pablico, G. T. (2017). Fecundity for *Dorosoma petenense*. Retrieved June 4, 2024, from fishbase: https://fishbase.se/Reproduction/FecundityList.php?ID=1606&GenusName=Dorosoma&SpeciesName=petenense&fc=794&StockCode=1799.
- Rohde, F.C., Arndt, R.G., Foltz, J.W., and Quattro, J.M. (2009). Freshwater Fishes of South Carolina. The University of South Carolina Press. Columbia, SC.
- U.S. Environmental Protection Agency (USEPA). (2004). Section 316(b) Phase II Final Rule
 Regional Studies, Part D: Mid-Atlantic Region. Washington, D.C.: U.S. Environmental
 Protection Agency .

Attachment 2

Effects of Bad Creek II
Complex and Expanded Weir
on Aquatic Habitat Final
Report

EFFECTS OF BAD CREEK II COMPLEX AND EXPANDED WEIR ON AQUATIC HABITAT

FINAL REPORT

AQUATIC RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

June 3, 2024

EFFECTS OF BAD CREEK II COMPLEX AND EXPANDED WEIR ON AQUATIC

HABITAT FINAL REPORT

BAD CREEK PUMPED STORAGE PROJECT FERC PROJECT No. 2740

TABLE OF CONTENTS

Sect	tion	Title	Page No.	
1	Project	t Introduction and Background	1	
1.	•	oject Nexus		
2		and Objectives		
3		Area		
4	•	ds		
4.	.1 Pe	elagic Trout Habitat Assessment	5	
	4.1.1	Pelagic Trout Habitat Monitoring Review	5	
	4.1.2	CFD Model Results Review		
4.	.2 Li	ttoral Habitat Assessment	6	
	4.2.1	CHEOPS Model Results Review	6	
	4.2.2	Quantification of the Littoral Zone		
5	Results	S		
5.	.1 Pe	elagic Trout Habitat Assessment		
	5.1.1	Pelagic Trout Habitat Monitoring		
	5.1.2	CFD Model Results		
	5.1.3	Findings		
5.	.2 Li	ttoral Habitat Assessment		
	5.2.1	CHEOPS Model Results		
	5.2.2	Quantification of the Littoral Zone		
	5.2.3	Findings		
6		isions		
7	Variances from FERC-approved Study Plan			
8	Germane Correspondence and Consultation			
9	Refere	nces	27	

TABLE OF CONTENTS CONTINUED

Section	Title	Page No			
LIST OF TABLES					
Table 4-2. Summary of Water Stable 5-1. Summary of CHEOP: Table 5-2. Summary of Water Stable 5-2.	urface Elevations for Evaluated S Model Resultsurface Elevations (ft msl) for Evaluated	ed to Littoral Habitat			
LIST OF FIGURES					
Figure 4-1. Secchi Depth Sampli Figure 5-1. Pelagic Trout Habita Figure 5-2. Measured or Predicte blue shaded areas represent time (1991)	ing Locations	ncement of Project operations			
	ATTACHMENTS				
Attachment A – Pelagic Trout H Attachment B – CFD Modeling Attachment C – Littoral Habitat	Figures				

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius ANOVA analysis of variance

Bad Creek (or Project)
Bad Creek Pumped Storage Project
Bad Creek II Complex
CFR
Code of Federal Regulations
CFD
Computational Fluid Dynamics

CHEOPS Computer Hydro-Electric Operations and Planning SoftwareTM

DO dissolved oxygen

Duke Energy Carolinas, LLC

Eq. equation

FERC or Commission Federal Energy Regulatory Commission

ft feet

ft msl feet above mean sea level

KT Project Keowee-Toxaway Hydroelectric Project

m meters

mg/L milligrams per liter

MISC minimum increment of significant change

RSP Revised Study Plan

SCDNR South Carolina Department of Natural Resources

SD standard deviation

Tukey HSD Tukey's Honestly Significant Difference

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir (Upper Reservoir) and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

This report includes the methods and results from Task 2 (Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat) of the Bad Creek Aquatic Resources Study. The Aquatic Resources Study is ongoing in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

1.1 Project Nexus

Duke Energy is proposing the development of a second powerhouse as part of the new license for the Project. The Bad Creek II Power Complex (Bad Creek II Complex) would consist of a new upper reservoir inlet/outlet structure, water conveyance system, underground powerhouse, and lower reservoir inlet/outlet structure. Operation of the Bad Creek II Complex would more than double the existing flow to Lake Jocassee during generation as compared to the existing Project, which has the potential to affect reservoir dynamics.

As part of the original Project design, a submerged weir was constructed approximately 1,800 feet (ft) downstream of the Project's inlet/outlet structure to dissipate energy from generation flows and minimize the effects of Project operations on natural lake stratification by preventing the mixing of warmer water from the discharge with the cooler water in Lake Jocassee. The weir functions as a fish protection mechanism for Lake Jocassee's trout fishery, which relies on suitable pelagic habitat with cool water and high dissolved oxygen (DO). This habitat can become limited during summer months, particularly following warmer winters which limit lake turnover and thus replenishment of oxygenated water at lower reservoir elevations. As part of the Bad Creek II Complex construction, the submerged weir is proposed to be expanded in the downstream direction with approximately 1.3 million cubic yards of spoil material from the underground tunnel excavation and new inlet/outlet structure construction.

The Aquatic Resources Task 2 Study evaluates how the addition of Bad Creek II Complex operations and expanded submerged weir may affect pelagic trout habitat in Lake Jocassee and alter conditions within the littoral zone² due to changes in water discharge and surface water elevation.

² The littoral zone is the nearshore habitat where solar radiation penetrates through the water column all the way to the lake bottom in sufficient levels to support photosynthesis (Seekell et al. 2021).

2 Goals and Objectives

Tasks for the Bad Creek Aquatic Resources Study used standard methodologies consistent with the scope and level of effort described in the RSP. The goal of the Aquatic Resources study is to evaluate potential impacts to aquatic life populations, communities, and habitats, due to the construction and operation of the proposed Bad Creek II Complex.

This report was developed in support of Task 2 of the Aquatic Resources Study (Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat). The main objective of this task is to assess changes to pelagic and littoral aquatic habitat in Lake Jocassee resulting from the proposed additional operations from a second powerhouse and expanded submerged weir. This objective was met through the evaluation of model results developed for the Water Resources Study, including:

- 1) The Computational Fluid Dynamics (CFD) model developed for the Water Resources Study (Task 3); results from the CFD model were used to evaluate potential effects, if any, on pelagic trout habitat due to water column mixing in Lake Jocassee and if the addition of Bad Creek II operations and expanded weir could impact habitat; and
- 2) The Computer Hydro-Electric Operations and Planning Software[™] (CHEOPS) model (updated in collaboration with the Bad Creek Water Resources Resource Committee); results from the CHEOPS model informed effects on littoral habitat in Lake Jocassee associated with water exchange rates, magnitude, and duration of operations between the Project and Bad Creek II Complex, and the Jocassee Pumped Storage Station.

3 Study Area

The study area includes Lake Jocassee. Specifically, the study evaluates the pelagic area downstream of the expanded weir in Whitewater River cove and the lake-wide littoral zone (Figure 3-1).

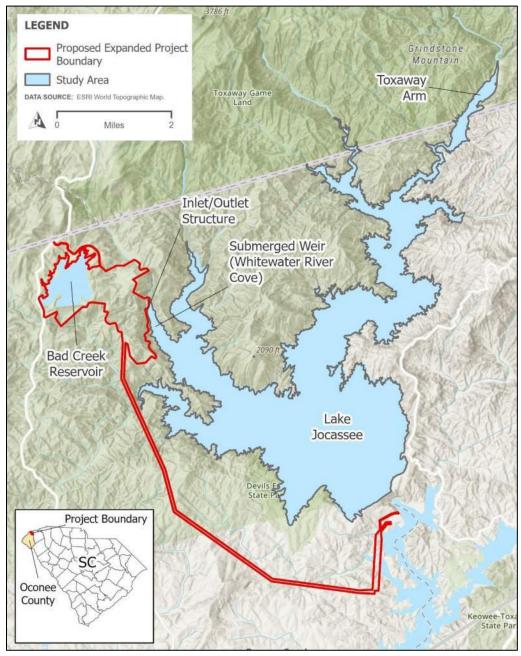


Figure 3-1. Aquatic Resources Study Task 2 Study Area

4 Methods

4.1 Pelagic Trout Habitat Assessment

As one of the few reservoirs in South Carolina containing both a year-round warmwater and coldwater fishery, the state prioritizes Lake Jocassee as a trout fishery by implementing a stocking program and regular monitoring of the trout and forage fish community. To assess how the addition of Bad Creek II Complex may affect trout in Lake Jocassee, specific water quality parameters and CFD modeling results were evaluated for potential disruptions to late summer pelagic trout habitat.

4.1.1 Pelagic Trout Habitat Monitoring Review

In support of the fishery and originally as part of the 10-year work plans under the Memorandum of Understanding developed in 1996 with the South Carolina Department of Natural Resources (SCDNR)³, Duke Energy monitors Lake Jocassee's pelagic trout habitat as indicated by specific thermal and DO criteria (see Duke Energy [2022] for a summary of the 10-year work plans to date and the KT Project Relicensing Agreement). Pelagic trout habitat is defined as water with temperatures ≤ 20.0 degrees Celsius (°C) and DO concentrations ≥ 5.0 milligrams per liter (mg/L) (Oliver et. al. 1978).

Using vertical profile data (temperature and DO) collected in Lake Jocassee since 1973, Duke Energy developed an empirical model (Foris 1991) to predict trout habitat thickness and volume in the main body of Lake Jocassee. The empirical model is used to estimate the amount of pelagic trout habitat in late summer, when water temperatures are highest and the lake has been stratified the longest (i.e., when pelagic trout habitat is expected to be minimal). Lake Jocassee is a monomictic lake which experiences thermal stratification during the summer and mixing during the winter. Thermal stratification occurs from late spring to late fall when the uppermost layer of the water column (epilimnion) warms from solar radiation, resulting in a less-dense layer of water atop a more dense, cooler bottom layer (hypolimnion). The transition between these layers is the thermocline, or metalimnion, which exhibits a rapid change in temperature and functions as a barrier between the two layers, thereby preventing mixing. In late fall as ambient

³ Included in the KT Project Relicensing Agreement and New License issued by FERC in 2016 for the KT Project.

air temperatures decline and solar radiation is reduced, the epilimnion becomes cooler and more dense, sinking in the water column and resulting in a mixing, or turnover, of the water column.

4.1.2 CFD Model Results Review

A CFD model was developed using FLOW-3D (Flow Science 2023) to evaluate flow patterns and the potential for vertical mixing in the Whitewater River cove downstream of the submerged weir. Results of the CFD study (HDR 2023) were filed with the Initial Study Report on January 4, 2024 as Appendix A, Attachment 3 (*Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse Final Report;* HDR 2023). For details on modeling approach, geometry, resolution, boundary conditions, simulations, limitations, and assumptions, refer to HDR (2023).

For the current task, results of the CFD model were assessed and compared to existing pelagic trout habitat data (measured and predicted trout habitat) to evaluate the potential effects on pelagic trout habitat due to increased water column mixing in Lake Jocassee. Several CFD scenarios were modeled (HDR 2023), however, the only scenarios considered in this study include (1) generation under maximum lake elevation and (2) generation under minimum lake elevation. The expanded weir configuration was assumed for this evaluation as CFD results indicated similar flow patterns in Whitewater River cove between existing and expanded weir configurations.

4.2 Littoral Habitat Assessment

Operation of the Bad Creek II Complex will influence water surface elevations in Lake Jocassee and may affect littoral zone habitat in the lake. CHEOPS model results were used to compare the water surface elevations during growing and spawning seasons and the resultant amount of littoral zone habitat in Lake Jocassee under Bad Creek II operations compared to the amount of littoral zone habitat under existing license requirements (i.e., baseline conditions).

4.2.1 CHEOPS Model Results Review

The CHEOPS model is designed to evaluate the effects of operational changes and physical modifications at multi-development hydroelectric projects. The CHEOPS model used for the Project includes six hydroelectric facilities within the Savannah River Basin and was originally developed in support of the KT Project relicensing. For use during current Bad Creek

relicensing, the model was updated to incorporate changes since KT Project relicensing as well as proposed operations of the Bad Creek II Complex.

Performance measures (a statistical summary of model output) related to a variety of different stakeholder interests were developed in consultation with relicensing stakeholders in 2023. Performance measures related to frequency of water surface fluctuations and water surface elevations in the littoral zone for Lake Jocassee were evaluated for this study (Table 4-1).

Stable water surface elevations are important for species that use the littoral zone for spawning, including black basses (*Micropterus* spp.), sunfishes (*Lepomis* spp.), Threadfin Shad (*Dorosoma petenense*), and landlocked Blueback Herring (*Alosa aestivalis*) (Stuber et al. 1982a, 1982b; Edwards et al. 1983; Aho et al. 1986; Rhode et al. 2009). Spawning success of fish species in the littoral zone can be influenced by the fluctuation of water levels due to potential for nest dewatering or altering fish behavior (e.g., nest abandonment). The water surface elevation in Lake Jocassee also determines the amount of littoral habitat available for spawning.

The CHEOPS model was run for two scenarios using a hydrologic data set from 1939 to 2011: Baseline (Duke Energy operations based on Project and KT Project license requirements) and Bad Creek II (Baseline scenario with the four additional Bad Creek II Complex units). Additional information on the development of the CHEOPS model and results is available in the *Water Exchange Rates and Lake Jocassee Reservoir Levels Report* (HDR 2024).

Table 4-1. Summary of CHEOPS Performance Measures Related to Littoral Habitat

Performance Measures	Measure Number	Criterion	Start Date	End Date	MISC ¹
Maximize spawning success for black bass and Blueback Herring (2.5-ft fluctuation band)	8	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once ²	1-Apr	31-May	5%
	9	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once ²	1-Apr	31-May	5%
	10	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once ²	1-Apr	31-May	5%
	11	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once ²	1-Apr	31-May	5%
	12	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once ²	1-Apr	31-May	5%
Maximize spawning success for black bass and Blueback Herring (3.5-ft fluctuation band)	13	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once ²	1-Apr	31-May	5%
	14	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once ²	1-Apr	31-May	5%
	15	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once ²	1-Apr	31-May	5%
	16	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once ²	1-Apr	31-May	5%
	17	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once ²	1-Apr	31-May	5%
	18	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once ²	15-May	15-Jul	5%
Maximize spawning success for sunfish and Threadfin Shad (2.5-ft fluctuation band)	19	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once ²	15-May	15-Jul	5%
	20	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once ²	15-May	15-Jul	5%
Maximize spawning success for sunfish and Threadfin Shad (3.5-ft fluctuation band)	21	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once ²	15-May	15-Jul	5%
	22	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once ²	15-May	15-Jul	5%

Performance Measures	Measure Number	Criterion	Start Date	End Date	MISC ¹
	23	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once ²	15-May	15-Jul	5%
Maximize littoral habitat during growing season	26	Percent of days average reservoir level above 1,107 ft msl ³	1-Apr	30-Sep	5%
	27	Percent of days average reservoir level above 1,105 ft msl ³	1-Apr	30-Sep	5%
Maximize littoral habitat	28	Percent of days average reservoir level above 1,107 ft msl ³	1-Apr	31-May	5%
during spawning season	29	Percent of days average reservoir level above 1,105 ft msl ³	1-Apr	31-May	5%
Minimize days below lake levels that impact Bad Creek efficiency	32	Number of days reservoir level below 1,081 ft msl ⁴	1-Jan	31-Dec	12

¹MISC = minimum increment of significant change. The MISC is the same units (i.e., days, days/year, percent, etc.) as the criterion. If the output of two scenarios for a particular criterion differs by less than or equal to the MISC, then there is no significant difference between those two scenarios.

²This criterion evaluates a day as 24 contiguous hours.

³Jocassee fish habitat elevations provided by Bill Marshall of SCDNR during the KT Project relicensing. Elevations in ft above mean sea level (ft msl).

⁴Jocassee elevation 1,081 ft msl provided by Duke Energy based on impact to pumping equipment.

4.2.2 Quantification of the Littoral Zone

4.2.2.1 Secchi Depth Data and Processing

Secchi depth is a measurement of water transparency achieved by lowering a reflective white disk into the water until it can no longer be observed from the water surface (Wernand 2010). Duke Energy historically collected Secchi depth data in Lake Jocassee by recording depth to the nearest 0.1 meter (m) as an average of two readings: when the disk disappeared from view and when it reappeared during raising (Duke Energy Field Procedure ESFP-SW-0503, Rev1). A map of Lake Jocassee Secchi Disk sampling locations is shown on Figure 4-1.

The dataset consisted of 1,182 samples with Secchi depth (meters), location sampled, and sampling date spanning from 2003 to 2015 (Duke Energy 2024). Based on variability of Secchi depth observed through preliminary descriptive statistics, it was hypothesized that Secchi depths closer to tributary inputs (i.e., coves) were not as deep compared to those in open water areas due to increased turbidity from tributaries. Increased precipitation related to seasonal changes could also result in changes in water clarity throughout the year. Therefore, analysis of variance (ANOVA) was used to determine if Secchi depth varied by sampling region (two regions: cove or open water [Figure 4-1]) or season (four seasons: March-May = spring, June-August = summer, September-November = fall, and December-February = winter) in factorial design (Secchi Depth ~ Sampling Region * Season). Factorial design was chosen *a priori* because it was believed that lake region and season could influence Secchi depth, simultaneously. Tukey's Honestly Significant Difference (Tukey HSD) test was used for post-hoc analysis of specific comparisons, mainly, lake region (cove or open water) comparison for each season (e.g., covespring: open water-spring).

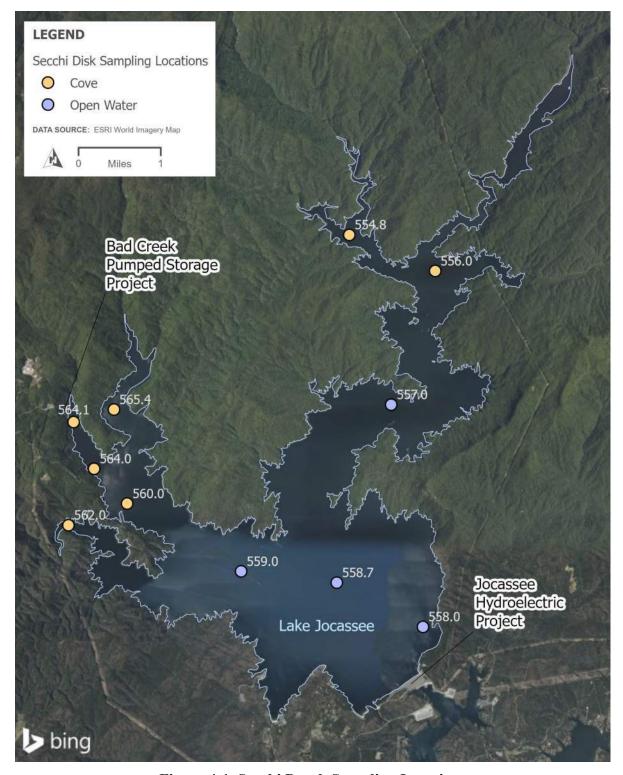


Figure 4-1. Secchi Depth Sampling Locations

4.2.2.2 Littoral Zone Depth and Extent

The littoral zone was defined as the water column that receives between 1 percent and 100 percent of incident radiation (light), from the water surface to the lake bottom (also called the euphotic zone) (Cole 1994). The vertical absorption coefficient (η), or the point at which less than 1 percent of light is detected in the water column, was calculated using known relationships between Secchi depth and light extinction (Poole and Atkins 1929) (Equation [Eq.] 1). Light at any given depth can be calculated from Eq. 2 and rearranged to find the depth of the euphotic zone using Eq. 3 and 4 (Lee and Rast 1997).

(Eq. 1)
$$\eta = \frac{1.7}{Secchi}$$

(Eq. 2)
$$I_z = I_o e^{-\eta z}$$

(Eq. 3)
$$z = \frac{\ln(I_o) - \ln(I_z)}{\eta}$$

(Eq. 4)
$$z = \frac{4.605}{n}$$

Where:

 η vertical absorption coefficient Secchi Secchi disk depth in m z depth I_z incident radiation at depth z incident radiation at depth 0

The extent, or spatial area, of the littoral zone was estimated using the calculated littoral zone depth for cove and open water regions (Sections 4.2.2.1 and 4.2.2.2), existing bathymetry data, and pre-defined water surface elevations. The bathymetry data for Lake Jocassee were collected as part of the KT Project relicensing in May and June 2010 (HDR 2010).

Five surface water elevations were evaluated in the littoral zone analysis: maximum elevation, normal minimum elevation, minimum elevation, and two elevations which were defined in the CHEOPS performance measures as maximizing littoral habitat during the growing/spawning season (corresponding to performance measures 26 through 29). Water surface elevations for the scenarios are summarized in Table 4-2.

Table 4-2. Summary of Water Surface Elevations for Evaluated Littoral Zone Scenarios

Littoral Zone Scenario	Elevation (ft msl)	
Maximum Elevation	1,110	
Littoral Zone Habitat During Growing/Spawning Season (High) ¹	$1,107^2$	
Littoral Zone Habitat During Growing/Spawning Season (Low) ¹	$1,105^2$	
Normal Minimum Elevation	1,096	
Minimum Elevation	1,080	

¹The "growing season" was defined as April 1 to September 30 and "spawning season" was defined as April 1 to May 31 in the CHEOPS performance measures.

²Lake Jocassee fish habitat elevations provided by Bill Marshall of SCDNR during KT Project relicensing.

5 Results

5.1 Pelagic Trout Habitat Assessment

5.1.1 Pelagic Trout Habitat Monitoring

Suitable pelagic trout habitat exists in the water column where specific water quality conditions required by trout are met; that is, water temperature less than 20°C and DO concentrations greater than 5.0 mg/L. During late summer thermal stratification, water in the upper water column (epilimnion) is warmed by solar radiation, eventually exceeding 20°C. In the lower portion of the water column (hypolimnion, below the thermocline), DO becomes limited due to minimal water circulation and consumption by anaerobic bacteria, declining below 5.0 mg/L. Therefore, suitable pelagic trout habitat is found between these two thresholds in the water column (Figure 5-1).

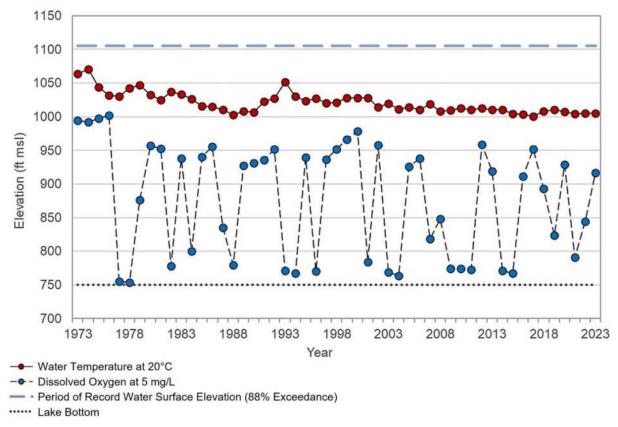
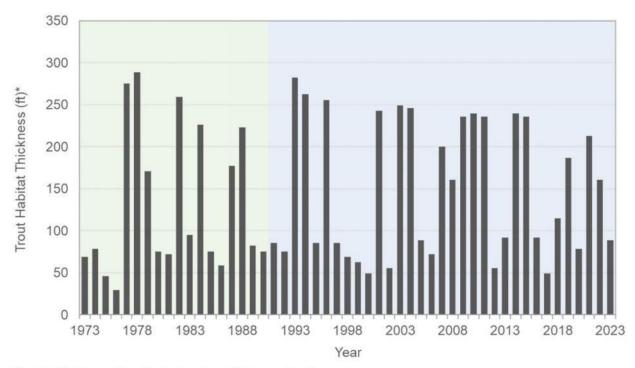



Figure 5-1. Pelagic Trout Habitat Thresholds from 1973-2023

Pelagic trout habitat "thickness" (i.e., the portion of the water column between the upper 20°C and lower 5.0 mg/L) has varied widely from year to year since monitoring began in 1973, both before and after operation of the Project (Figure 5-2). Water quality parameters for trout habitat are measured at the deepest part of the lake at location 558.0 (Figure 4-1), and therefore provide the maximum thickness of trout habitat potentially existing in the lake during the late summer period (when trout habitat would be at minimum). Factors driving the variability in trout habitat thickness include severity of summer conditions, depth of preceding winter mixing, and operations at Jocassee Pumped Storage Station.

*Trout habitat is considered pelagic waters with temperature less than 20°C and dissolved oxygen greater than 5 mg/L

Figure 5-2. Measured or Predicted Pelagic Trout Habitat Thickness from 1973-2023; green and blue shaded areas represent time prior to and following commencement of Project operations (1991)

A study completed by Foris (2014) depicted the seasonal pelagic trout habitat distribution from just upstream of the submerged weir (Station 564.1, see Figure 4-1) to Jocassee Dam using water quality data collected during 2013. The study also evaluated pelagic trout habitat in the Toxaway River arm. Contour plots from this study showed the seasonal restriction of pelagic trout habitat across the lake due to summer thermal stratification (Attachment A). More importantly, the Foris (2014) study showed that effects from Project operations were limited to the area upstream of the submerged weir (Attachment A, Figures 2 and 3). Pelagic trout habitat downstream of the weir and within Whitewater River cove, as indicated by data collected at sampling location 564.0 (see Figure 4-1), was approximately 29.5 ft "thick" in October 2013 (the most restricted month due to natural seasonal stratification). Although more limited than the deepest part of the lake (location 558.0 near Jocassee Dam) due to the shallower bathymetry, pelagic trout habitat was still present at this time of year as compared to uplake locations (i.e., northern headwater coves including Toxaway River arm) where trout habitat was eliminated in early and mid-fall.

5.1.2 CFD Model Results

Findings from the CFD study indicate that in generation mode, the energy of the water discharged from operations is dissipated as it is forced across the top of the existing submerged weir and similar vertical mixing patterns result from the existing and proposed expanded weir geometries under existing and proposed generation flows. Additionally, results showed Bad Creek II powerhouse operations will not alter existing stratification patterns in the downstream section of the Whitewater River cove or further downstream into Lake Jocassee. Water quality profile data (current and historic) support CFD model results; results from field monitoring as well as CFD modeling indicate the water column is completely mixed (i.e., no natural stratification) near the inlet/outlet structure upstream of the weir; however, just downstream of the weir, stratification is comparable to rest of the waterbody, indicating the weir is functioning as intended and mixing is largely confined to the Whitewater River cove upstream of the weir.

5.1.2.1 Maximum Generation, Maximum Elevation Scenario

Under the maximum elevation scenario during generation, the CFD model predicted the expanded submerged weir may cause slight flow acceleration across the top of the weir and downstream into the lower Whitewater River cove (Attachment B, Figures 1 and 2). The effect of added generation from the additional powerhouse did not extend beyond the Whitewater River cove. Water column mixing effects were observed immediately downstream of the weir, but do not extend more than approximately 1,050 ft from the weir (Attachment B, Figure 3) which is approximately halfway from the weir to sampling location 564.0.4

5.1.2.2 Maximum Generation, Minimum Elevation Scenario

As expected, velocity effects over the weir increase under the minimum elevation (i.e., maximum drawdown), however effects were again limited to the Whitewater River cove (Attachment B, Figures 4 and 5). Water column mixing effects were confined to the area immediately downstream of the weir, extending approximately 450 ft downstream. (Attachment B, Figure 6).

⁴ The entire length of the Whitewater River cove of Lake Jocassee is approximately 5,700 ft.

5.1.3 Findings

Pelagic trout habitat monitoring in Lake Jocassee since 1973 shows variation in the amount of suitable water conditions which is likely driven by natural environmental fluctuations and to some extent, operations at Jocassee Pumped Storage Station. Trout habitat thickness, as indicated at the deepest part of the lake, did not appear to change before and after Project operations commenced in 1991. The study by Foris (2014) shows sufficient trout habitat throughout the lake and into Whitewater River cove up to the submerged weir during all times of year, but that Whitewater River cove upstream of the weir does not support trout habitat in late summer due to thermal mixing from Project operations.

Water column mixing under the maximum elevation and minimum elevation scenarios occurs upstream of the weir and dissipates within 1,050 ft on the downstream side of the weir. Historical trout habitat monitoring conducted by Foris (2014) showed consistent (year-round) suitable trout habitat present at location 564.0, which is approximately 2,500 ft downstream of the weir.

Just as the existing weir reduces water column mixing downstream, the expanded weir is expected to act as a similar mechanism to reduce water column mixing and disruption to pelagic trout habitat in Lake Jocassee even with additional generation of Bad Creek II. CFD modeling showed no substantial difference in downstream effects between the existing weir and the expanded weir (HDR 2023).

Impacts to pelagic trout habitat resulting from increased vertical mixing due to operations from the Bad Creek II Complex are not expected based on historical lake dynamics, trout habitat monitoring, and hydraulic modeling.

5.2 Littoral Habitat Assessment

5.2.1 CHEOPS Model Results

The operations of Bad Creek II and resultant lake levels would be constrained by Duke Energy's continued compliance with the existing KT Project FERC license (HDR 2024). KT license requirements, including the operating band of Lake Jocassee, would not be modified with the relicensing of the Project or the construction and operation of Bad Creek II.

Most performance measures evaluated for the Bad Creek II scenario showed no significant change from the Baseline scenario (Table 5-1). The operation of Bad Creek II Complex increased generation and pumping volumes that, when offset by Jocassee Pumped Storage Station operations, resulted in more stable surface elevations at Lake Jocassee based on 24-hour elevation fluctuations (HDR 2024) (Figure 5-3).

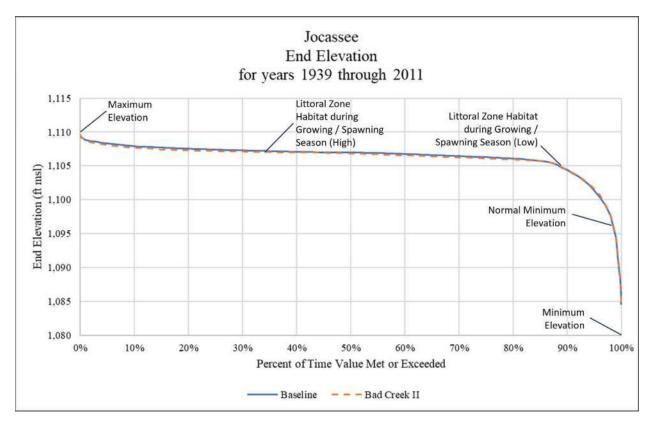


Figure 5-3. Normal Hydrology Jocassee 24-hour Reservoir Fluctuation for 1939-2011 (HDR 2024)

As a result, some performance measures related to maximizing spawning success for black bass and Blueback Herring (performance measures 8 through 11, and 17), and sunfish and Threadfin Shad (performance measures 18, 19, and 23) significantly improved over the Baseline scenario (Table 5-1).

The CHEOPS model results also indicated that reservoir levels to support littoral habitat during the growing or spawning season (at or above either 1,107 ft msl or 1,105 ft msl) were not significantly different under the Bad Creek II scenario as compared to the Baseline scenario (see

performance measures 26 through 29). Therefore, no significant differences in the amount of littoral habitat would be expected.

Table 5-1. Summary of CHEOPS Model Results

Performance	Measure		Scenario		
Measures	Number	Criterion	Baseline	Bad Creek II	
Maximize spawning success for black bass and Blueback Herring (2.5-ft fluctuation band)	8	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once	71%	100%	
	9	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once	34%	99%	
	10	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once	19%	89%	
	11	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once	0%	59%	
	12	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once	0%	0%	
	13	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once	100%	100%	
Maximize spawning	14	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once	100%	100%	
success for black bass and Blueback Herring (3.5-ft fluctuation band)	15	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once	100%	99%	
	16	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once	95%	97%	
	17	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once	56%	82%	
Maximize spawning	18	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once	45%	100%	
success for sunfish and Threadfin Shad (2.5-ft fluctuation band)	19	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once	14%	92%	
	20	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once	0%	3%	
Maximize spawning success for sunfish and Threadfin Shad (3.5-ft fluctuation band)	21	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once	100%	100%	
	22	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once	100%	100%	

Performance	Measure		Scenario	
Measures	Number	Criterion	Baseline	Bad Creek II
	23	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once	79%	99%
Maximize littoral	26	Percent of days average reservoir level above 1,107 ft msl	46%	42%
habitat during growing season	27	Percent of days average reservoir level above 1,105 ft msl	91%	91%
Maximize littoral habitat during spawning season	28	Percent of days average reservoir level above 1,107 ft msl	20%	16%
	29	Percent of days average reservoir level above 1,105 ft msl	92%	92%
Minimize days below lake levels that impact Bad Creek efficiency	32	Number of days reservoir level below 1,081 ft msl	0	0
Background	Performance measure has improved vs. the Baseline scenario			
Background	Performance measure has declined vs. the Baseline scenario			
Background	There is no significant difference between the scenarios by definition of MISC (see Table 4-1)			

5.2.2 Quantification of the Littoral Zone

5.2.2.1 Secchi Depth Analysis

Lake Jocassee is an oligotrophic reservoir exhibiting high water clarity and low nutrient concentrations as indicated by a Secchi depth that extends at least 15 ft into the water column (Carlson 1977) (Figure 5-4). Initial evaluation of Secchi depth data suggests potential spatial differences in Secchi readings depending on proximity to tributary inputs in Lake Jocassee. Further, seasonal changes in precipitation could simultaneously affect water clarity in cove locations due to increased tributary inputs and associated allochthonous material and sediment. Boxplots showed median Secchi depth to be consistently higher in the water column in cove regions compared to open water areas across all seasons (Figure 5-4).

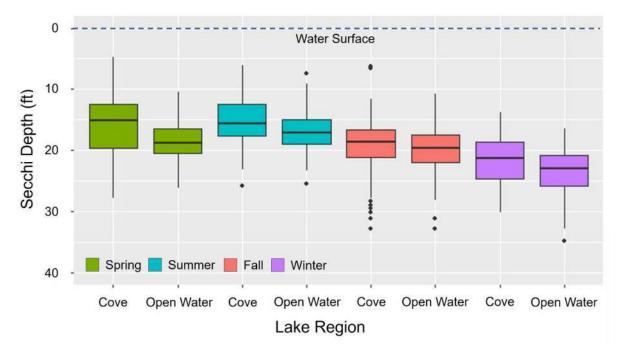


Figure 5-4. Box Plot of Secchi Depth Data (Duke Energy 2024) for Cove and Open Water Locations

The ANOVA model showed both sample location (open water or cove) and season (spring, summer, fall, winter) significantly influenced Secchi depth (ANOVA, p < 0.0001). However, the two-way interaction was also significant, indicating that both factors in combination had a substantial influence over Secchi depth across all seasons (ANOVA, p < 0.001). The greatest difference in Secchi depth between the open water and cove regions was in spring, with open water showing a significantly higher Secchi depth as compared with cove areas (Tukey HSD, p < 0.0001), likely due to seasonally (spring) related increase in precipitation. The smallest difference in Secchi depth between regions occurred in the fall and was not significant (Tukey HSD, p > 0.05). The difference in highest (open water during winter, mean 7.2 ft standard deviation [SD] = 1.1) and lowest (cove during spring, mean 4.8 ft SD = 1.5) Secchi depth readings was 2.3 ft.

Two performance measures evaluated as part of the CHEOPS model review and included in the littoral zone quantification were "maximum littoral habitat during growing/spawning season" based on water surface elevations of 1,107 ft msl and 1,105 ft msl; a 2-ft difference (Table 4-2). Since the greatest seasonal difference in Secchi depth was similar to this range (2.3 ft, as stated above) and for the simplicity of littoral zone quantification, average Secchi depth by region

across all seasons was used for littoral zone depth calculations. The mean Secchi depth for the open water region was 19.6 ft (SD = 4.1) and 17.9 ft (SD = 5.1) for cove areas.

5.2.2.2 Littoral Zone Estimate

The littoral zone depth (the depth at which 1 percent of incident radiation penetrates the water column) was calculated to be 48.4 ft in cove areas and 53.0 ft in the open water region. The water surface elevations as listed in Table 4-2 were assumed to be the maximum extent of the littoral zone (i.e., upper bound), from which the calculated depth of the littoral zone was subtracted to achieve the lower bound of the elevation band. The area of the littoral zone was calculated based on elevation ranges presented in Table 5-2 and bathymetry data.

Table 5-2. Summary of Water Surface Elevations (ft msl) for Evaluated Littoral Zone Scenarios

Littoral Zone Scenario	Reservoir Water Surface Elevation	Littoral Zone Bottom Elevation	
		Cove Region	Open Water Region
Maximum Elevation	1,110	1,062	1,057
Littoral Zone Habitat During Growing/Spawning Season (High) ¹	$1,107^{2}$	1,059	1,054
Littoral Zone Habitat During Growing/Spawning Season (Low) ¹	$1,105^2$	1,057	1,052
Normal Minimum Elevation	1,096	1,048	1,043
Minimum Elevation	1,080	1,032	1,027

¹The "growing season" was defined as April 1 to September 30 and "spawning season" was defined as April 1 to May 31 in the CHEOPS model (see Table 4-1).

Lake Jocassee was estimated to support approximately 1,457.3 acres of littoral habitat at maximum elevation (1,110 ft msl) (Table 5-3). At normal minimum elevation, a total of 1,421.4 acres of littoral habitat was available, a reduction of 2.5 percent from the maximum elevation. At minimum elevation (1,080 ft msl), littoral habitat dropped to 1,288.0 acres (a decline of 11.6 percent from maximum elevation) and shifted spatially toward the center of the reservoir and coves (Attachment C, pages 1-4).

²Lake Jocassee fish habitat elevations provided by Bill Marshall of SCDNR during the KT Project relicensing.

CHEOPS performance measures 26 through 29 used reservoir surface water elevations of 1,107 ft msl and 1,105 ft msl to evaluate the amount of time Lake Jocassee's elevation supported littoral zone habitat during the growing season (April 1 to September 31) and spawning season (April 1 to May 31). Littoral habitat acreage at these elevations varied only slightly (Attachment C, pages 5-8) and was estimated to be 22.1 to 22.7 acres less than the estimated littoral habitat at maximum elevation, a difference of only 1.5 percent (Table 5-3).

The littoral zone was spread relatively evenly throughout Lake Jocassee with the exception of the Toxaway River arm, where the Toxaway River enters Lake Jocassee. The Toxaway River arm encompassed a substantial portion of Lake Jocassee's total littoral zone, comprising up to 24.8 percent of the littoral zone under the maximum drawdown scenario and 30.9 percent for all others.

Table 5-3. Estimated Littoral Habitat (acres) in Lake Jocassee

	Re	Percent		
Littoral Zone Scenario	Cove	Open Water	Total	difference from Maximum Elevation
Maximum Elevation	718.5	738.8	1,457.3	
Littoral Zone Habitat During Growing/Spawning Season (High) (1,107 ft msl)	703.9	731.3	1,435.2	-1.5
Littoral Zone Habitat During Growing/Spawning Season (Low) (1,105 ft msl)	701.4	733.2	1,434.6	-1.6
Normal Minimum Elevation	671.7	749.7	1,421.4	-2.5
Minimum Elevation	541.5	746.5	1,288.0	-11.6

5.2.3 Findings

The CHEOPS model results indicate the addition of the Bad Creek II Complex would not result in impacts to spawning success or littoral zone habitat as compared to conditions currently experienced by aquatic life under the Baseline scenario in Lake Jocassee. In fact, the model suggests that some conditions (e.g., spawning success) would improve with the addition of Bad Creek II Complex operations as indicated by the performance measures.

The maximum drawdown scenario inherently represents the minimum amount of littoral zone habitat that could occur under existing KT Project license conditions. However, during the entire

hydrologic dataset evaluated in the CHEOPS model (1939 to 2011), Lake Jocassee never reached maximum drawdown water surface elevation. The CHEOPS model showed zero days where Lake Jocassee water surface elevation would be below 1,081 ft msl (performance measure 32).

Lake Jocassee reservoir surface elevation is between 1,104 ft msl and 1,109 ft msl 90 percent of the period of record (1939 through 2011) under both the Baseline and Bad Creek II scenarios (HDR 2024). This range encompasses the "Littoral Zone Habitat (High)" scenarios (which maintain 98.4-98.5 percent of littoral zone habitat) and is greater than normal minimum water surface elevation as required by Article 402 of the KT Project license.

6 Conclusions

In coordination with the SCDNR and in accordance with the KT Project Relicensing Agreement, Duke Energy has conducted pelagic trout habitat monitoring in Lake Jocassee since 1973. If trout habitat is projected to be less than 32.8 ft (10 m) thick by September, potential adjustments to hydropower operations at Jocassee Pumped Storage Station are made in consultation with the SCDNR. The lowest projected trout habitat since the Project's operations started in 1991 was 49.2 ft in the year 2000 and 2017, well above the threshold for consultation.

Pelagic trout habitat in Lake Jocassee was not substantially different before or after the development and operation of the Project. Based on historic spatial temperature and DO dynamics of Lake Jocassee and hydraulic modeling to predict flow velocity and water column mixing, no impacts to pelagic trout habitat are expected as a result of Bad Creek II Complex operations.

Littoral habitat in Lake Jocassee under Bad Creek II Complex operations is expected to remain the same or improve as compared to Baseline conditions. Increased generation and pumping rates with the addition of Bad Creek II Complex (and coupled with increased Jocassee Pumped Storage Station operations which act to offset Bad Creek II Complex operations) would reduce the range of water surface elevation fluctuation, thereby maintaining higher stability during fish spawning and growing season periods. The amount of littoral habitat estimated for Lake Jocassee at normal minimum water surface elevation (1,096 ft msl), as defined under Article 402 of the KT Project license, is just 2.5 percent less than at maximum elevation. The CHEOPS results

show that Lake Jocassee would not be expected to reach maximum drawdown water surface elevations under typical operations. Furthermore, based on the Bad Creek II scenario results, Lake Jocassee is shown to be held most often above 1,104 ft msl which maintains greater than 98 percent of Lake Jocassee's total littoral zone habitat.

Marginal, if any, impacts to pelagic or littoral aquatic habitat in Lake Jocassee are anticipated as a result of the addition of the Bad Creek II Complex.

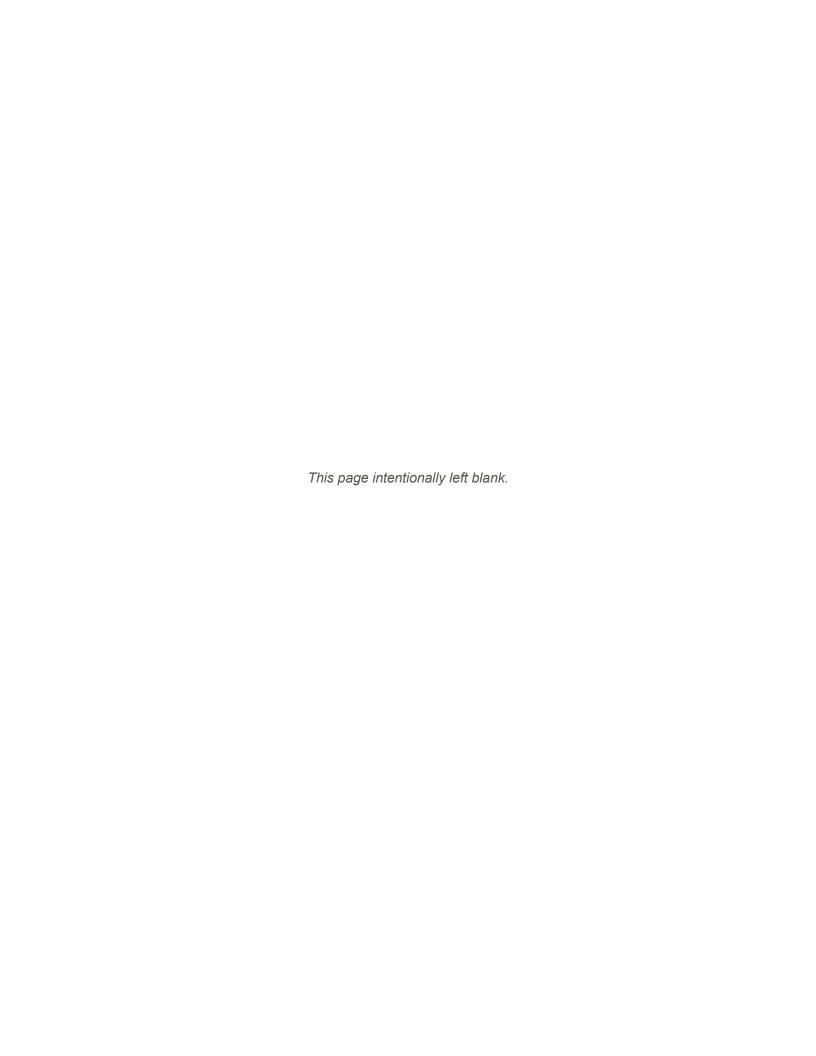
7 Variances from FERC-approved Study Plan

There were no variances from the FERC-approved study plan.

8 Germane Correspondence and Consultation

Consultation documentation for the Aquatic Resources Study will be included in the USR.

9 References


- Aho, J.M, C.S. Anderson, and J.W. Terrell. 1986. Habitat suitability index models and instream flow suitability curves: redbreast sunfish. U.S. Fish and Wildlife Service Biological Report 82(10.119). 23 pp.
- Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography 22(2): 361-369.
- Cole, G.A. 1994. Textbook of Limnology, 4th ed. Waveland Press, Inc.
- Duke Energy Carolinas, LLC (Duke Energy). 2022. Pre-application Document. Bad Creek Pumped Storage Project FERC Project No. 2740. February 23, 2022.
- . 2024. Secchi disk data, Microsoft Excel workbook format. Transmitted via email from Nick Wahl on March 1, 2024.
- Edwards, E.A., G. Gebhart, and O.E. Meughan. 1983. Habitat suitability information: Smallmouth bass. U.S. Fish and Wildlife Service FWS/OBS-82/10.36. 47 pp.
- Flow Science, Inc. (Flow Science). 2023. User Manual: FLOW-3D Documentation, release 23.1.0.12. Albuquerque: Flow Science, Inc.
- Foris, W.J. 1991. Temporal and spatial variability in pelagic trout habitat in a southeastern pumped-storage reservoir. Paper presented at NALMS, November 1991. Denver, CO.
- _____. Jocassee Reservoir Pelagic Trout Habitat: Year 2013. Duke Energy, Huntersville, NC. November 2014.
- HDR Engineering, Inc. of the Carolinas (HDR). 2010. Keowee-Toxaway Hydroelectric Project (FERC No. 2503) Lake Jocassee Bathymetry Study Report. October 2010.
- _____. 2023. Velocity effects and vertical mixing in Lake Jocassee due to a second powerhouse. Final Report. Bad Creek Pumped Storage Project FERC Project No. 2740. Prepared for Duke Energy Carolinas, LLC, October 27, 2023.
- _____. 2024. Water Exchange Rates and Lake Jocassee Reservoir Levels Final Report. Bad Creek Pumped Storage Project, FERC Project No. 2740. Prepared for Duke Energy Carolinas, LLC, March 2024.
- Lee, R.W. and W. Rast. 1997. Light attenuation in a shallow, turbid reservoir, Lake Houston, Texas. U.S. Geological Survey Water-Resources Investigations Report 97-4064. Austin, TX.
- Oliver, J.L., P.L. Hudson, and J.P. Clugston. 1978. Effects of a pumped-storage hydroelectric plant on reservoir trout habitat. Proceedings of the Southeastern Association of Fish and Wildlife Agencies 31: 449-457.

- Poole, H.H., and W.R.G. Atkins. 1929. Photo-electric measurements of submarine illumination throughout the year. Journal of Marine Biological Association of the United Kingdom 16(1): 297-324.
- Rohde, F.C., Rudolf, G.A., Foltz, J.W., and J.M. Quattro. 2009. Freshwater Fishes of South Carolina. University of South Carolina Press, Columbia, SC.
- Seekell, D., B. Cae, S. Norman, and P. Bystrom. 2021. Patterns and variation of littoral habitat size among lakes. Geophysical Research Letters 48: e2021GL095046.
- Stuber, R.J., G. Gebhart, and O.E. Maughan. 1982a. Habitat suitability index models: Largemouth bass. U.S. Fish and Wildlife Service, Biological Services Program. FWS/OBS-82/10.16. 32 pp.
- _____. 1982b. Habitat suitability index models: Bluegill. U.S. Fish and Wildlife Service. FWS/OBS-82/10.8. 26 pp.
- Wernand, M.R. 2010. On the history of the Secchi disc. Journal of the European Optical Society-Rapid publications, Europe, v. 5, April 2010. ISSN 1990-2573.

Attachment A

Attachment A – Pelagic Trout Habitat Figures (Foris 2014)

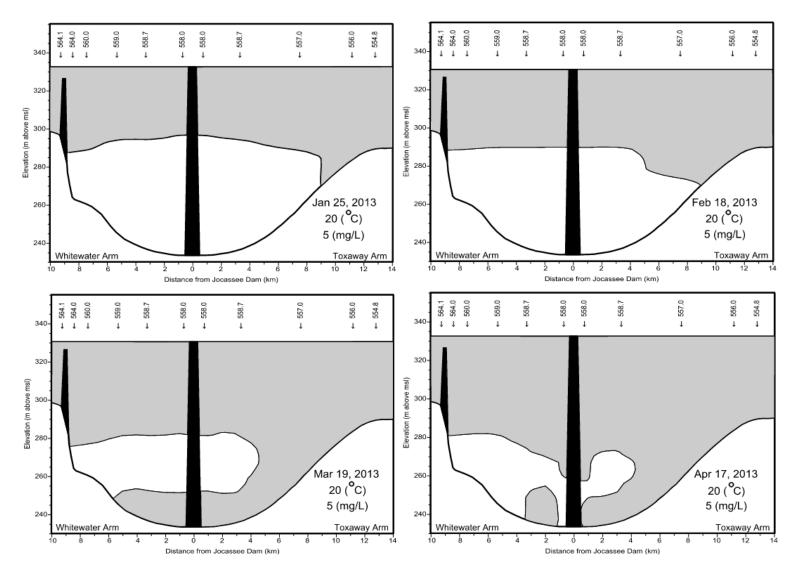


Figure 1. Seasonal distribution of suitable pelagic trout habitat (shaded area) for Lake Jocassee, January – April 2013 (Foris 2014). Pelagic trout habitat is the area of the water column less than 20°C and dissolved oxygen greater than 5.0 mg/L. The structure (black) at approximately 9 km from Jocassee Dam is the submerged weir in Whitewater River cove.

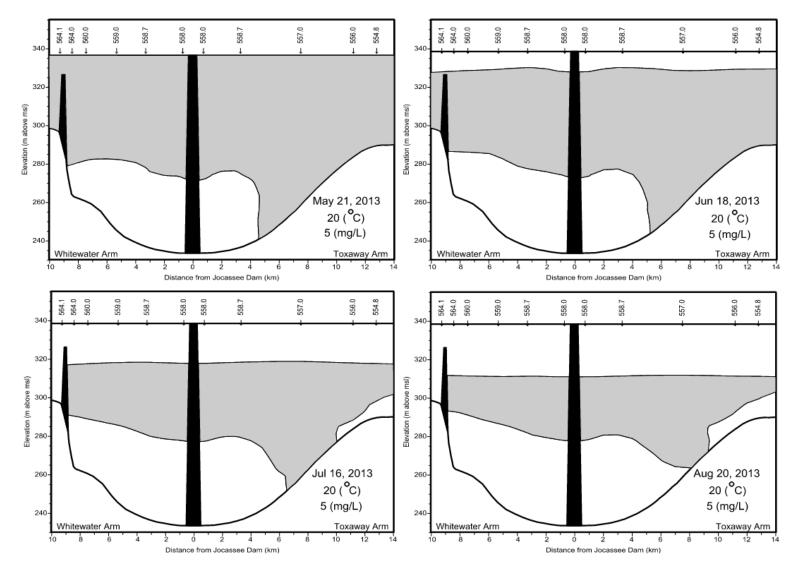
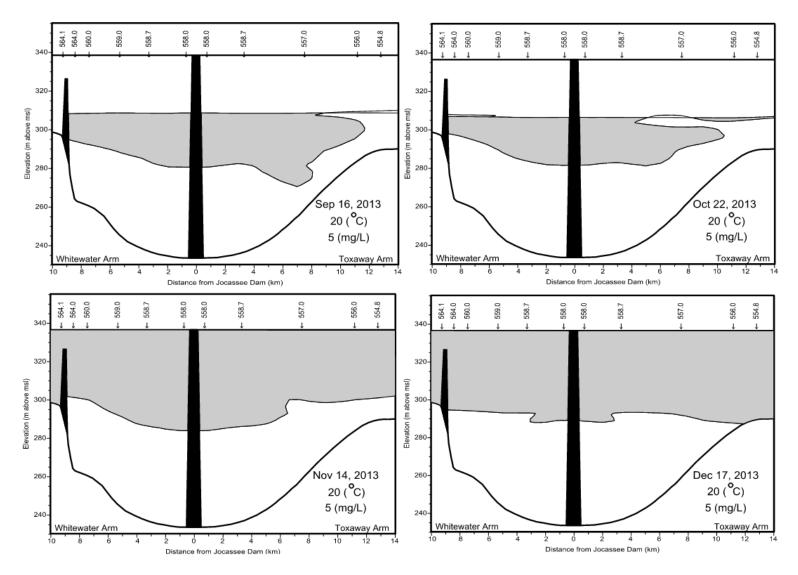
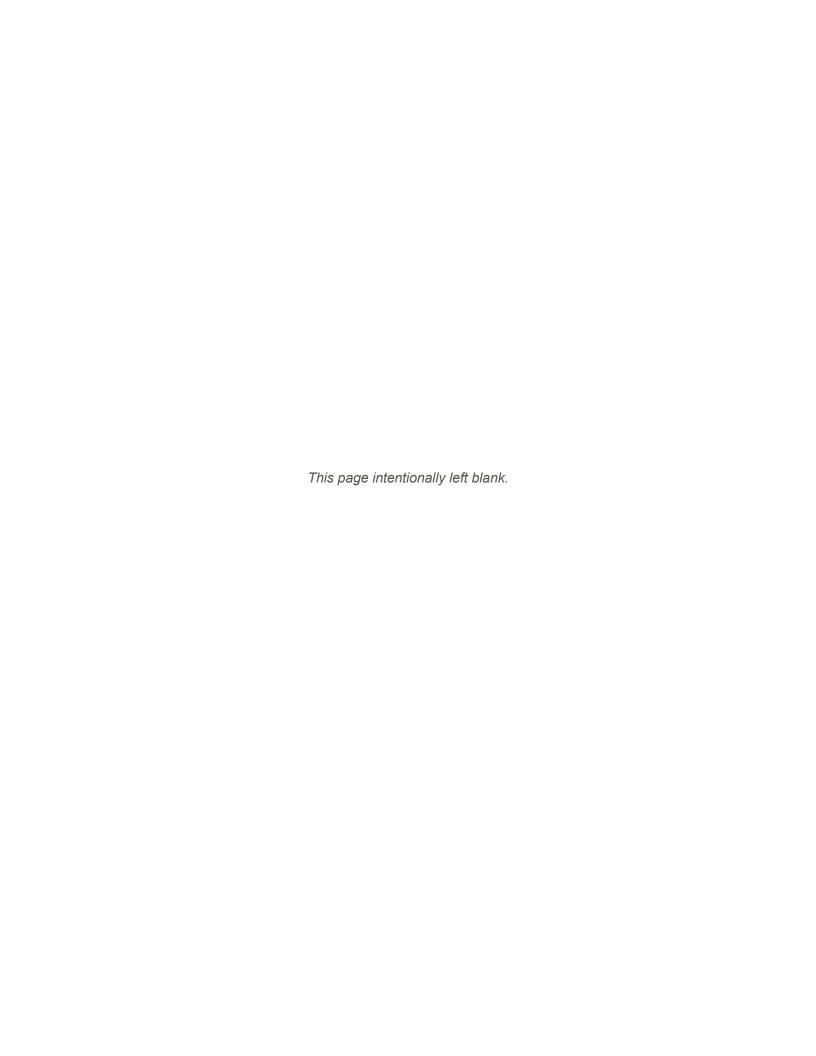
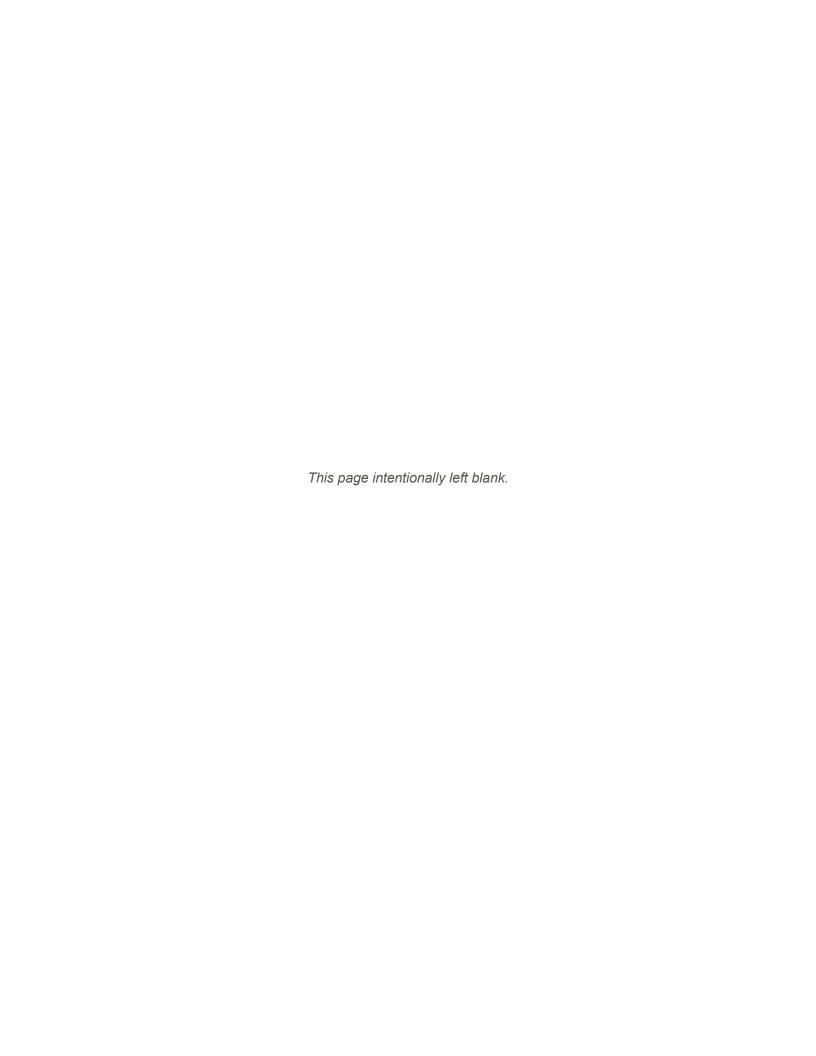


Figure 2. Seasonal distribution of suitable pelagic trout habitat (shaded area) for Lake Jocassee, May – August 2013 (Foris 2014). Pelagic trout habitat is the area of the water column less than 20°C and dissolved oxygen greater than 5.0 mg/L. The structure (black) at approximately 9 km from Jocassee Dam is the submerged weir in Whitewater River cove.


Figure 3. Seasonal distribution of suitable pelagic trout habitat (shaded area) for Lake Jocassee, September – December 2013 (Foris 2014). Pelagic trout habitat is the area of the water column less than 20°C and dissolved oxygen greater than 5.0 mg/L. The structure (black) at approximately 9 km from Jocassee Dam is the submerged weir in Whitewater River cove.

Attachment B

Attachment B – CFD Modeling Figures

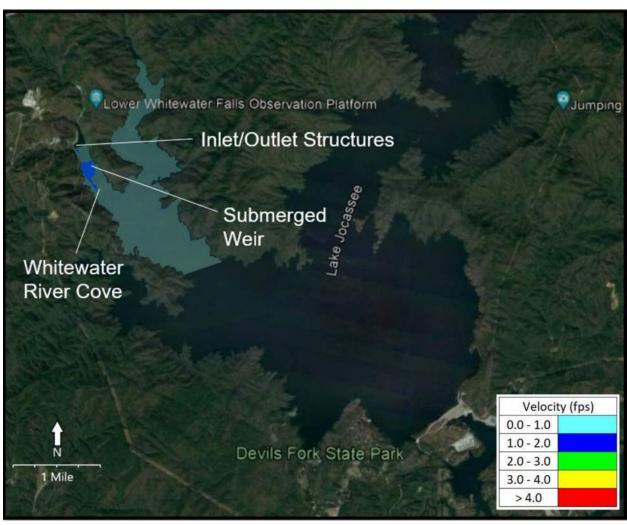


Figure 1. Proposed Generation with Expanded Weir at Full Pond (1,110 ft msl) – Velocity Contours (HDR 2023)

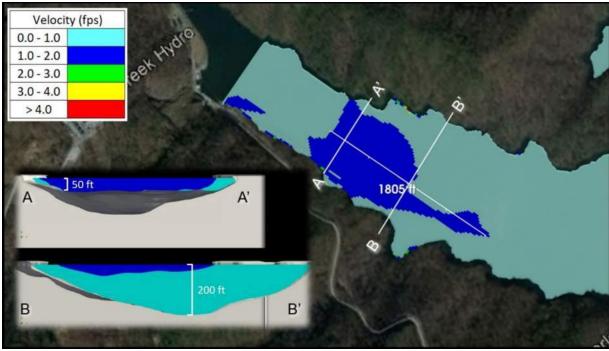


Figure 2. Proposed Generation (Expanded Weir) at Full Pond (1,110 ft msl) – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right) (HDR 2023)

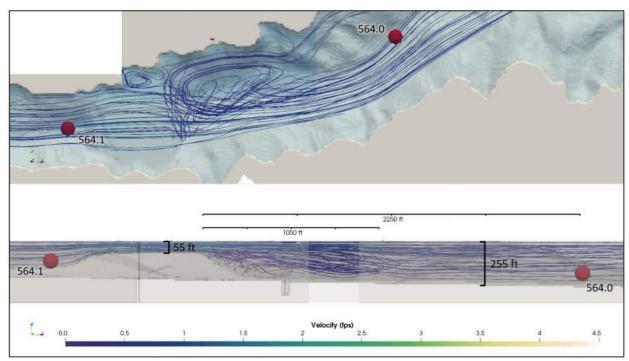


Figure 3. Proposed Generation (Expanded Weir) at Full Pond (1,110 ft msl) – Whitewater River Cove Streamlines (flow is left to right, red circles represent water quality sampling locations) (HDR 2023)



Figure 4. Proposed Generation with Expanded Weir at Maximum Drawdown (1,080 ft msl – Velocity Contours (HDR 2023)

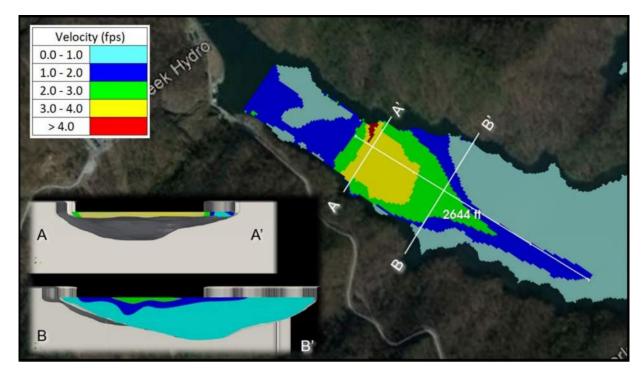


Figure 5. Proposed Generation (Expanded Weir) at Maximum Drawdown (1,080 ft msl) – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right) (HDR 2023)

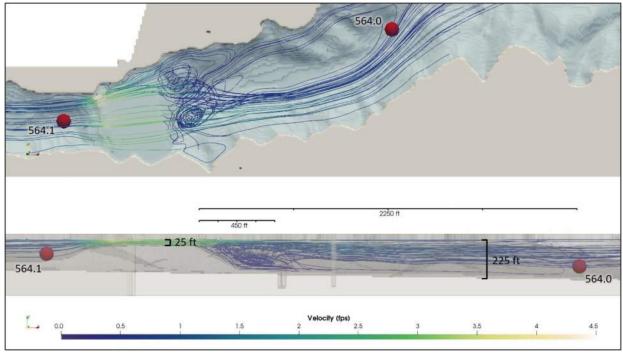
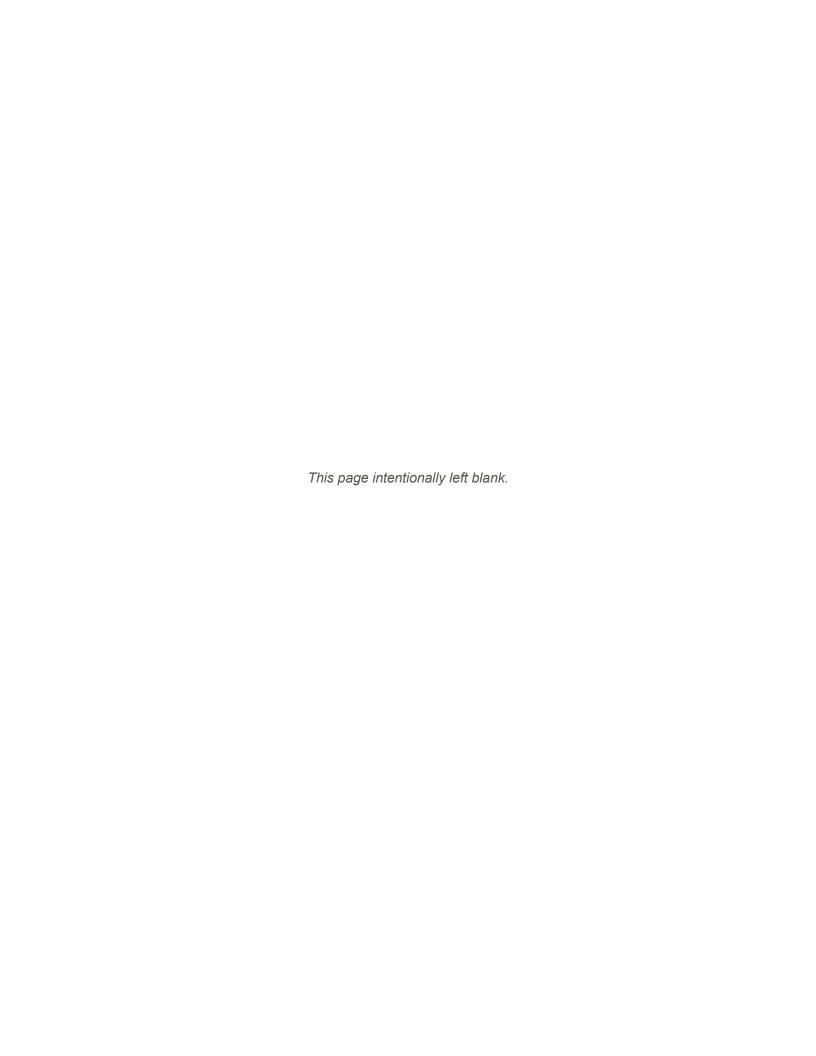
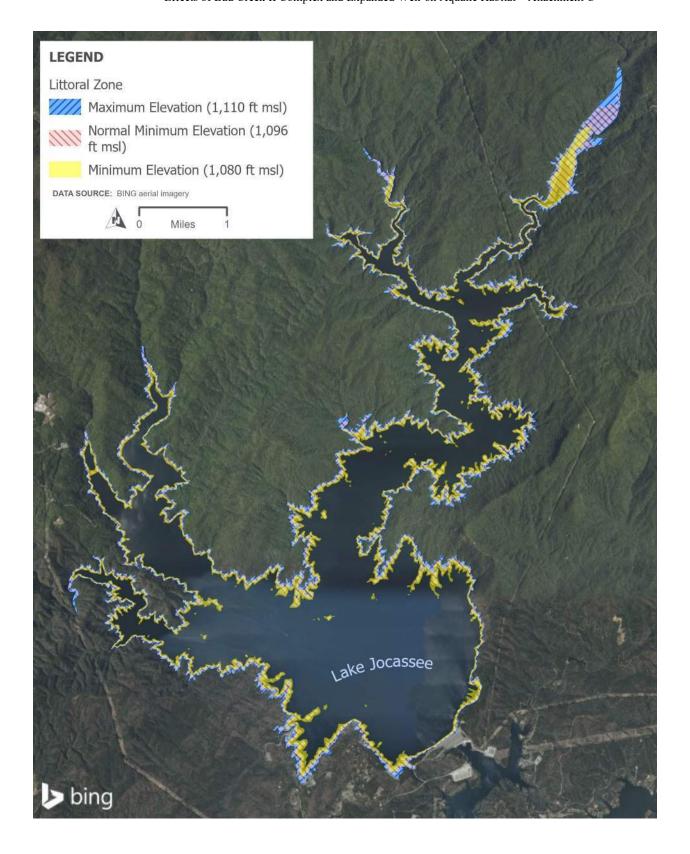
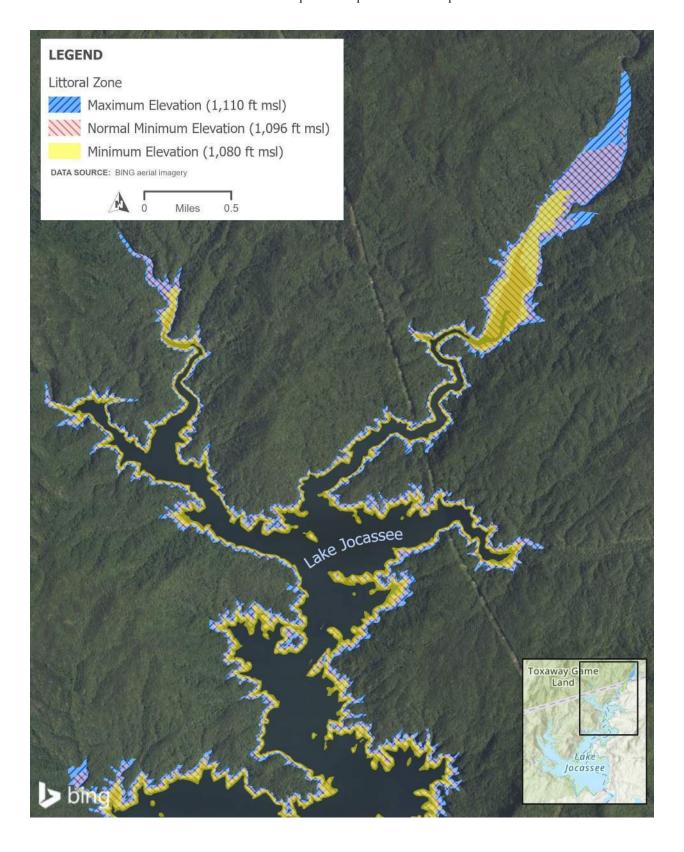
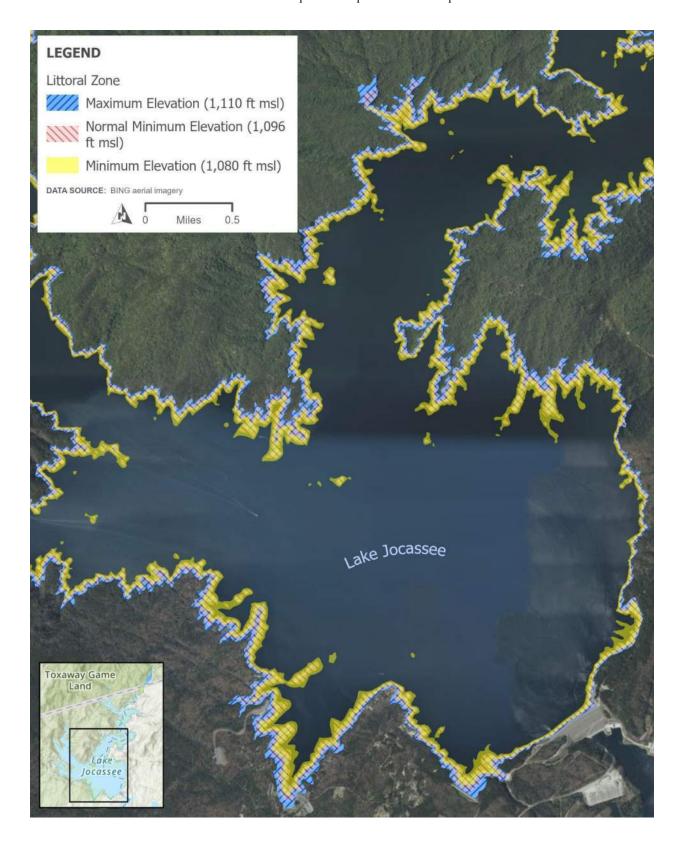



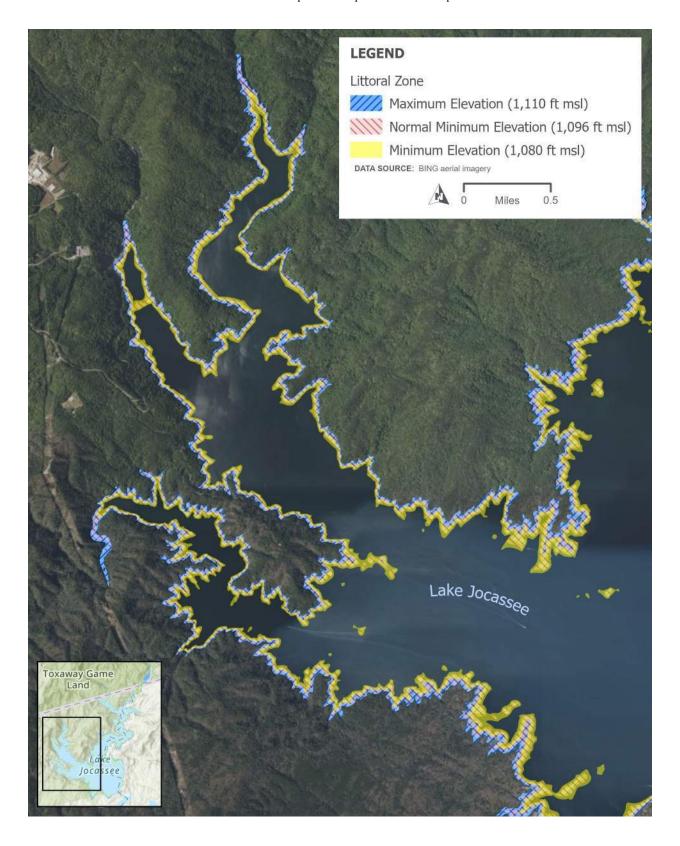
Figure 6. Proposed Generation (Expanded Weir) at Maximum Drawdown (1,080 ft msl) – Whitewater River Cove Streamlines (flow is left to right, red circles represent water quality sampling locations) (HDR 2023)

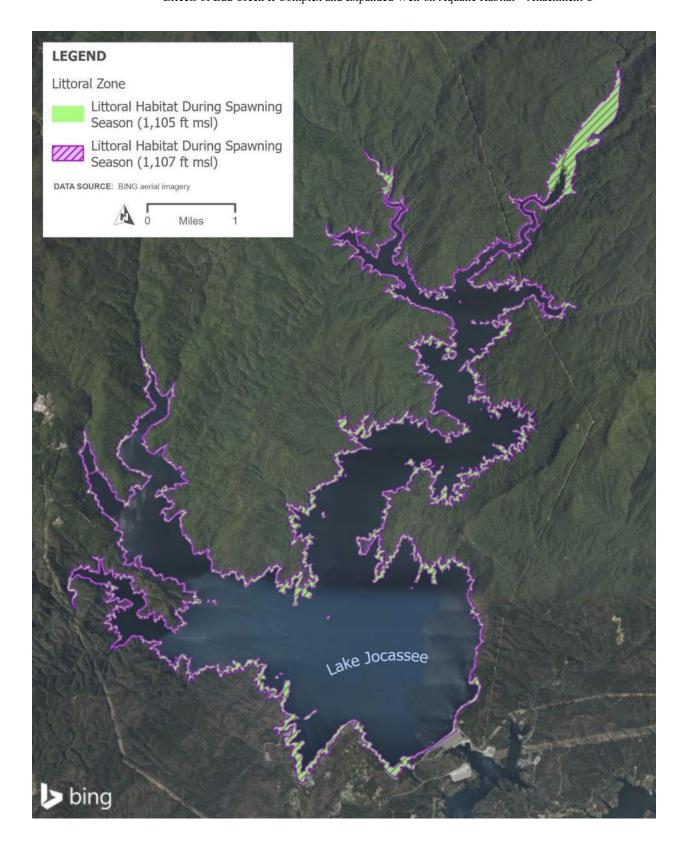


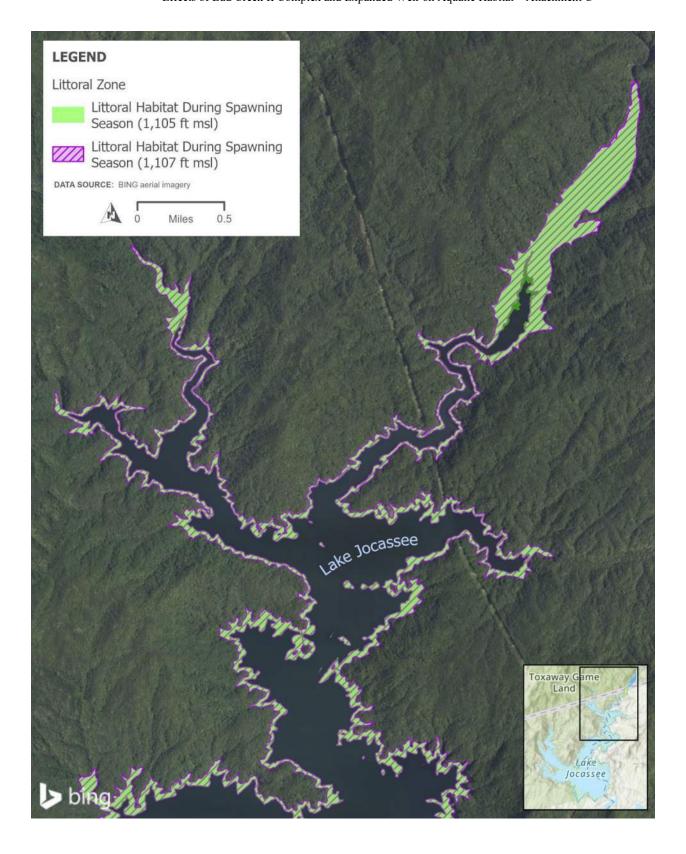
Attachment C

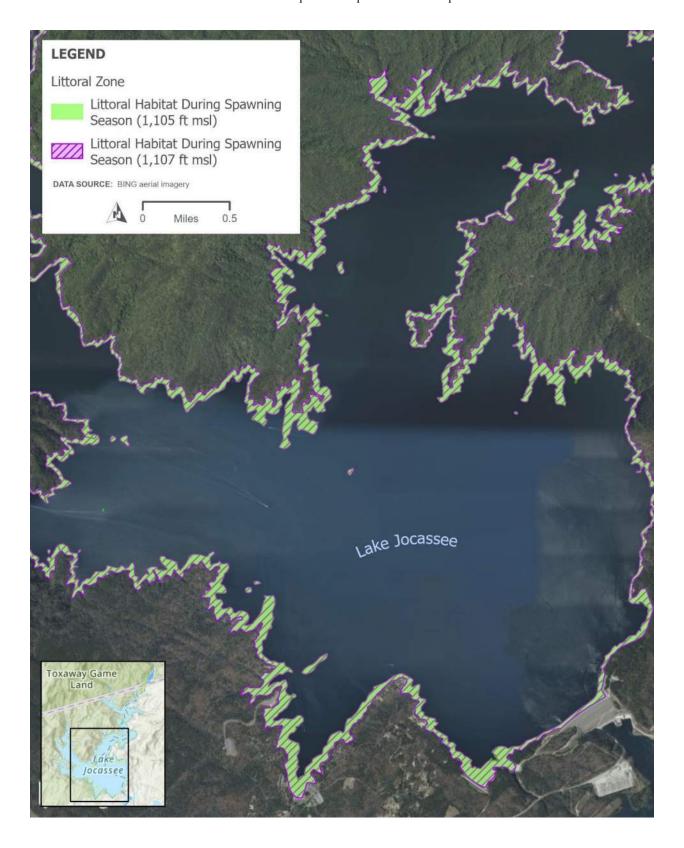

Attachment C – Littoral Habitat Figures

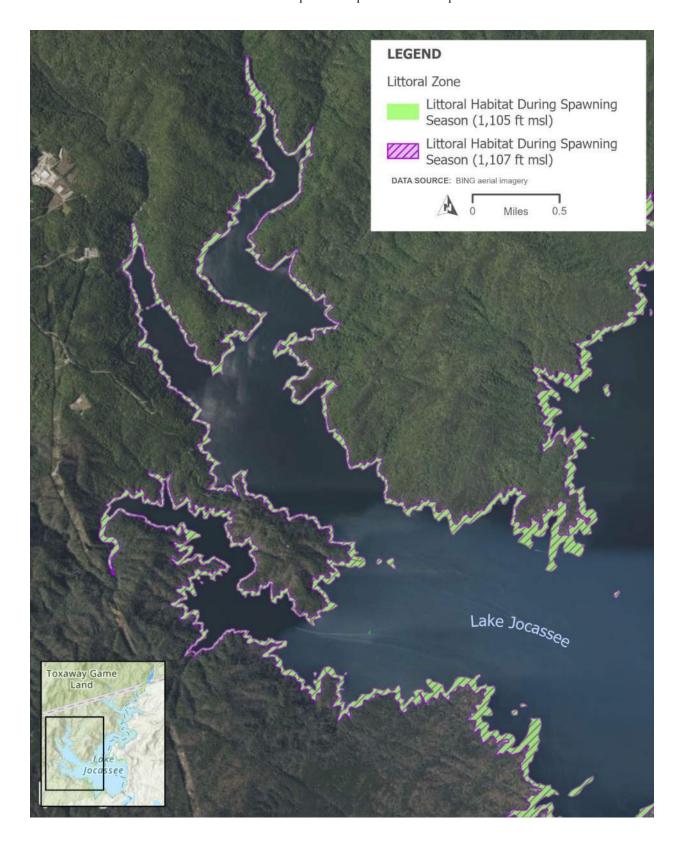


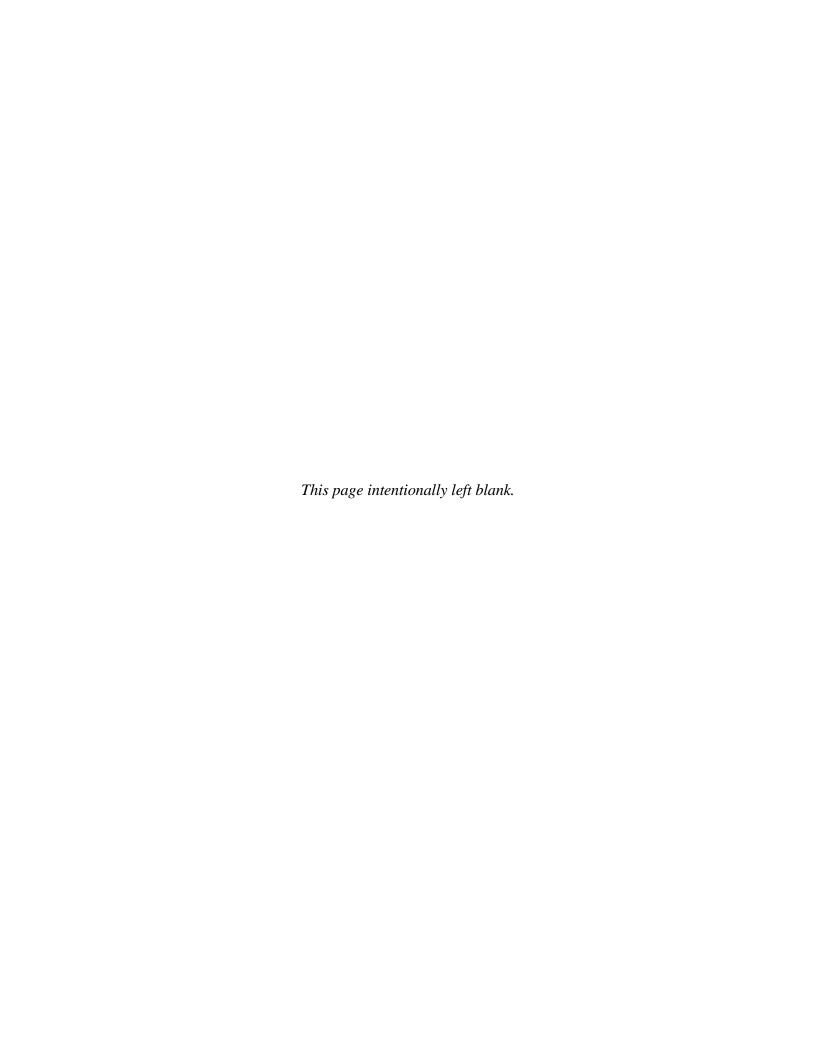












Attachment 3

Impacts to Surface Waters and Associated Aquatic Fauna Final Report

IMPACTS TO SURFACE WATERS AND ASSOCIATED AQUATIC FAUNA

FINAL REPORT

AQUATIC RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

February 14, 2023

IMPACTS TO SURFACE WATERS AND ASSOCIATED AQUATIC FAUNA BAD CREEK PUMPED STORAGE PROJECT

FERC PROJECT No. 2740

TABLE OF CONTENTS

Section	Title	Page No.
•	et Introduction and Background	
	and Objectives	
	Areaview	
	ods	
	Jatural Resources Assessments	
	tream Habitat Quality Surveys	
5.2 S 5.2.1	Rapid Bioassessment Protocol	
5.2.1	North Carolina Stream Assessment Method	
5.2.3	South Carolina Stream Quantification Tool	
	ish Community Sampling	
	Vacroinvertebrate Sampling	
5.4.1	Kick Net Collection	
5.4.2	D-frame Dip Net Collection	
5.4.3	Leaf Pack Collection	
5.4.4	Visual Collection	
5.5 N	Mussel Surveys	12
6 Resul	ts	12
6.1 N	Vatural Resource Assessments	12
6.2 S	tream Habitat Quality Surveys	14
6.2.1	Rapid Bioassessment Protocol	
6.2.2	North Carolina Stream Assessment Method	
6.2.3	Stream Quantification Tool	16
6.3 F	ish Community Sampling	21
6.4 N	Macroinvertebrate Sampling	24
6.5 N	Mussel Surveys	26
7 Concl	usions	29
7.1 Iı	npacts Assessment	29
	nces from FERC-approved Study Plan	
	ane Correspondence and Consultation	
10 Refer	ences	
	Y	
	LIST OF TABLES	
	Summary of Parameters and Metrics used in the Stream Quantification	
	Summary of Surface Waters and Wetlands estimated ¹ within Potential	_
	Streams and Wetlands identified along the Temporary Access Road	
Table 6-3.	Summary of USEPA Rapid Bioassessment Protocol Stream Habitat As	ssessments 15

TABLE OF CONTENTS

CONTINUED

Section	Title	Page No.
Table 6-4. Summary of NC S	Stream Assessment Method Ratings	16
•	etation Plot Data	
	nm Characteristics	
•	ication Scores ¹ for Stream 1 (Limber Pole Creek) and	
Table 6-8. Water Quality Re	sults Summary during Macroinvertebrate Sampling	25
Table 6-9. SCDHEC Aquation	c Biology Section Habitat Assessment Summary	25
-	rmane Correspondence and Consultation related to Ta	
	LIST OF FIGURES	
Figure 3-1. Potential Spoil L	ocations and Proposed Temporary Access Road Stud	y Area 3
_	nvertebrate Sampling Reaches on Stream 1 (Limber F	,
_	nvertebrate Sampling Reaches on Stream 7 (Howard	
Figure 6-3. Mussel Habitat S	Survey Areas along Lake Jocassee Shoreline	28
	Attachments	
Attachment A - Aquatic Res	ources Study Approach to Stream Surveys Memo	
Attachment B - Natural Reso	ources Assessment Figures	
Attachment C - U.S. Enviror Forms	nmental Protection Agency Rapid Bioassessment Prot	tocol Data
Attachment D - North Caroli	na Stream Assessment Method Data Forms	
Attachment E - Riparian Veg	getation Survey Plot Data and Photolog	
Attachment F - Stream Quan	tification Tool Rapid Method Forms	
Attachment G - Streams Pho	tolog	
	unity Sampling Data and Photo Vouchers	
	brate Sampling Data and Photolog	
Attachment J - SQT Catchme	ent Assessment and Matrix Summaries	

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

Bad Creek (or Project)
Bad Creek Pumped Storage Project
Bad Creek II Complex
BEHI
Bad Creek II Power Complex
bank erosion hazard index
CFR
Code of Federal Regulations

CPUE catch per unit effort

DBH diameter at breast height

Duke Energy or Licensee Duke Energy Carolinas, LLC

EPT Ephemeroptera, Plecoptera, and Trichoptera FERC or Commission Federal Energy Regulatory Commission KT Project Keowee-Toxaway Hydroelectric Project

mg/L milligrams per liter NBS near-bank stress

NCDWQ North Carolina Division of Water Quality
NCSAM North Carolina Stream Assessment Method
Protocol SCDNR Fish Collection Protocols for Streams

RBP Rapid Bioassessment Protocol

RSP Revised Study Plan

SCDHEC South Carolina Department of Health and Environmental Control

SCDNR South Carolina Department of Natural Resources

SQT Stream Quantification Tool
USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir (Upper Reservoir) and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

This final report includes the methods and results from Task 3 (Impacts to Surface Waters and Associated Aquatic Fauna) of the Bad Creek Aquatic Resources Study. The Aquatic Resources Study is ongoing in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Goals and Objectives

Tasks carried out for the Bad Creek Aquatic Resources Study employed standard methodologies that are consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022 (Duke Energy 2022). The goal of the Aquatic Resources study is to evaluate potential impacts to aquatic life populations, communities, and habitats, due to the construction and operation of the proposed Bad Creek II Power Complex (Bad Creek II Complex).

This report was developed in support of Task 3 of the Aquatic Resources Study (Impacts to Surface Waters and Associated Aquatic Fauna). The main objective of this task is as follows:

• Evaluating potential direct impacts to aquatic habitat (including wetlands) related to Bad Creek II Complex construction activities and weir expansion by quantifying and characterizing surface waters, including resource quality.

This objective was met through a combination of activities, including desktop description of impacted surface waters, previously conducted Natural Resource Assessments of areas of potential impact, and presence/absence of mussels and characterization of habitat quality through surveys of streams in the potential spoil deposition areas.

Duke Energy is proposing the development of a temporary access road to provide an alternate route to the Fisher Knob community during Bad Creek II Complex construction. The potential 3.7-mile-long predominantly gravel road was not proposed at the time of RSP filing. Therefore, in addition to assessing surface waters that have the potential to be impacted by construction as described in the RSP, Duke Energy evaluated surface waters that would be crossed by the access road, with the same goals and objectives as those established in the RSP.

3 Study Area

The study area includes the shoreline of Lake Jocassee, streams within potential upload spoil locations, and streams and creeks that would be crossed by the potential temporary access road as described in the June 28, 2023, Relicensing Study Progress Report No. 2 filed with FERC (Figure 3-1).

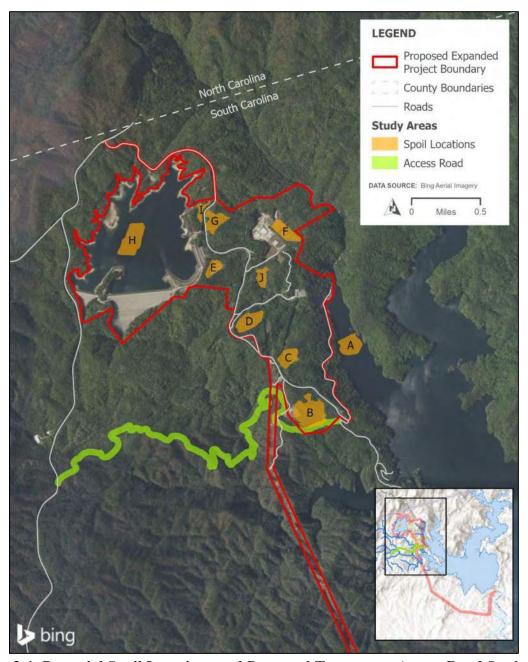


Figure 3-1. Potential Spoil Locations and Proposed Temporary Access Road Study Area

4 Overview

Construction of the Bad Creek II Complex would impact existing streams and waterbodies, including wetlands. Overburden (i.e., soil and rock) material from the construction activities are proposed to be deposited in spoil locations throughout the site. Siting for spoil location alternatives is ongoing by Duke Energy, with consideration of existing natural resources that are identified during site investigations, existing topography, and quantity of material used to expand the submerged weir in Lake Jocassee (if pursued). Although Duke Energy will avoid and minimize impacts to surface waters and wetlands to the extent practicable, it is likely that impacts to streams and wetlands will occur as a result of spoil placement.

Duke Energy is also proposing the development of a temporary access road to provide an alternate route to the Fisher Knob community and Project during the period of Bad Creek II Complex construction. The access road would be decommissioned following Project construction completion.

Duke Energy proposed to evaluate the aquatic resources (streams, wetlands, and Lake Jocassee) that may experience direct impacts from spoil placement or other construction activities. This included a characterization of aquatic resources with respect to stream types as indicated from natural resources assessments, habitat quality, and potential fauna (mussels) presence. Field activities in support of this study task are outlined below.

5 Methods

General methods for stream habitat quality surveys and mussel surveys were provided in the Aquatic Resources RSP and are detailed further below. With the addition of the proposed temporary access road and through consultation with the South Carolina Department of Natural Resources (SCDNR), additional methodologies (described below) related to the South Carolina Stream Quantification Tool (SQT) were adapted by Duke Energy into the study. A memo developed as a summary of stream survey approach methods prepared in consultation with SCDNR and filed with the Commission with the September 28, 2023, Relicensing Study Progress Report No. 3 is provided as Attachment A (HDR 2023).

5.1 Natural Resources Assessments

Natural resources assessments of the potential upland spoil locations were conducted using a combination of desktop and field assessments while applying methodologies and guidance described in the U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE 1987), the 2012 USACE Eastern Mountains and Piedmont Regional Supplement (Version 2.0) (USACE 2012), USACE Regulatory Guidance Letter 05-05 Ordinary High Water Mark Identification, and the North Carolina Division of Water Quality (NCDWQ) Methodology for Identification of Intermittent and Perennial Streams and Their Origins (Version 4.11) (NCDWQ 2010).

A delineation of surface waters and wetlands crossed by the temporary access road was completed following the same USACE and NCDWQ guidance, including flagging in the field and recording with a sub-meter accuracy GPS. The delineation was completed for a 100-foot buffer around the potential temporary access road.

5.2 Stream Habitat Quality Surveys

As stated in Section 4, the disposal of overburden material in upland locations would result in impacts to streams and wetlands and will require an individual permit from the USACE and water quality certification from South Carolina Department of Health and Environmental Control (SCDHEC) under the authorities of Sections 404 and 401 of the Clean Water Act. In preparation for these expected regulatory processes (if Bad Creek II Complex is pursued), stream habitat quality surveys were completed to provide a physical assessment of the existing conditions of streams that have the potential to be impacted.

5.2.1 Rapid Bioassessment Protocol

In accordance with the FERC-approved Aquatic Resources RSP, the stream habitat assessment portion of the U.S. Environmental Protection Agency (USEPA) Rapid Bioassessment Protocol (RBP) was completed for streams within potential spoil locations. Streams and creeks crossed by the temporary access road were also assessed, as described in the Relicensing Study Progress Report No. 3 filed with FERC on September 28, 2023, and the Aquatic Resources Study Approach to Stream Surveys technical memo, which has undergone stakeholder review. These assessments provide information regarding stream functionality and condition, which in turn can

indicate the value of aquatic habitat to aquatic and terrestrial life, and ecosystem services such as nutrient reduction and support of watershed health. The USEPA RBP includes an evaluation of the variety and quality of (1) stream substrate, (2) channel morphology, (3) bank structure, and (4) riparian vegetation (Barbour et al. 1999). Ten parameters across four condition categories (e.g., poor, marginal, suboptimal, or optimal) were rated on a numerical scale of zero to twenty for each sampled reach, with higher scores indicating supportive conditions. Total scores were then compared to reference reach conditions for an overall index. Reference reaches are stable segments of streams against which streams can be compared for optimal condition.

5.2.2 North Carolina Stream Assessment Method

The North Carolina Stream Assessment Method (NCSAM) was completed for streams within potential spoil locations and streams or creeks crossed by the temporary access road. The NCSAM rates streams for three Class 1 functions: hydrology, water quality, and habitat. Within each Class 1 function, streams are rated for up to eight Class 2 functions, which may include Class 3 and Class 4 functions. The functions provided by a stream are a product of the hydrologic, geologic, morphologic, and vegetational setting of the stream and its drainage area (Gordon et al. 1992 as cited by N.C. Stream Functional Assessment Team 2013). Alterations and/or stressors can contribute to the degradation of a stream, either naturally or anthropogenically, including storm damage, excessive vegetation, beaver impoundment, stream migration, and sedimentation, which can lead to lower stream function. Parameters evaluated with NCSAM protocol include flow restrictions; streambank erosion; buffer size and type; water quality stressors; substrate composition; in-stream habitat; visual and dip netting assessments for aquatic life; presence of wetlands; shade; and others.

The NCSAM utilizes a Boolean logic chain of reasoning to convert metric evaluation results into qualitative functional ratings for individual metrics, function classes, and an overall functional rating.

5.2.3 South Carolina Stream Quantification Tool

The SC SQT was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. In May 2023, the SCDNR requested that Duke Energy apply the SQT methods to streams within

potential spoil locations and streams crossed by the temporary access road. Duke Energy consulted with the SCDNR in May and June 2023 regarding the applicability and methodology of the SQT for stream assessments. In July 2023, Duke Energy and the SCDNR conducted a site visit to two potential spoil locations representative of conditions across the site. It was agreed among the SCDNR staff and Duke Energy personnel that streams within potential spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for streams in these areas were not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, Duke Energy proposed to field survey streams potentially crossed by the temporary access road, only. Documentation of all consultation for the Aquatic Resources study is included in Attachment 4 of Appendix B of the Initial Study Report.

Reach lengths for SQT assessments were 100 linear feet upstream and downstream at each potential temporary access road stream crossing based on the results of the stream and wetland delineation completed in September 2023 (see Section 5.1). Each stream was segmented into "upstream" and "downstream" reaches to facilitate comparison of stream conditions before (i.e., baseline) and after construction of the temporary access road and to provide a means for considering natural events which may influence the condition of the streams. For example, a major storm event resulting in high flows and movement of large woody debris could influence stream geomorphology and overall condition. To determine how natural events may affect the stream, the upstream reach will function as a control comparison during the period in which the road crossing is installed.

Stream surveys consisted of assessment of five functional categories including hydrology, hydraulics, geomorphology, physiochemical, and biology (South Carolina Steering Committee 2022a). Depending on the anticipated type of impact or lift, physiochemical and biology categories are optional. Guidance from the SQT suggests physiochemical parameters be measured for stream projects with "goals or objectives related to physiochemical functions or where watershed conditions suggest that uplift is possible." Construction of the proposed Fisher Knob access road would be conducted from upland locations and no in-water work would occur. Best management practices to prevent sedimentation, such as silt fencing, would be installed to prevent water quality impacts at stream crossings. Given that impacts to water quality are not

FDR

anticipated and appropriate stream protection measures will be taken, no physiochemical monitoring was conducted.

5.2.3.1 Hydrology, Hydraulics, and Geomorphology

All streams crossed by the proposed access road were surveyed for the first three functional categories of the SQT (hydrology, hydraulics, and geomorphology). Stream geomorphic measurements were made using tapes, stadia rod, and a line level per the Rapid Method approach described in the SQT Data Collection and Analysis Manual² (South Carolina Steering Committee 2022a).

The field team identified bankfull indicators along the 100-foot reach and selected a stable riffle for the dimension survey. The channel was surveyed by stretching the tape between bankfull indicators on each bank and leveled via line level. The depth from bankfull was measured across the channel bottom and recorded. The field team used these data to compare to regional curves (SCDNR 2020) for bankfull verification.

Riffle and pool data (e.g., bankfull depth, bankfull width, low bank height, flood prone width, maximum pool depth, etc.) were collected at each feature along the reach. Due to difficulty in the field with dense vegetative cover and limited line-of-sight, stream and valley slope was measured via GIS with 2-foot topography. Stream sinuosity was also measured via GIS using the stream boundaries delineated during the natural resources assessment.

Assessments of large woody debris and bank erosion/near bank stress were made for each stream reach. Large woody debris (defined as dead and fallen wood over 1 meter in length and at least 10 centimeters in diameter at its largest end, within the channel or touching the top of streambank) was noted for each stream reach. Bank erosion was documented where present and bank erosion hazard index (BEHI) and near-bank stress (NBS) calculated.

As part of the geomorphology assessment, one 10-meter-by-10-meter vegetation plot was established on either side of channel for each stream reach and the vegetation community observed was documented in accordance with the Carolina Vegetation Survey level 2 method

² https://www.dnr.sc.gov/sqt/docs/SC SQT Data Collection and Analysis Manual.pdf

(Lee et al. 2008). Diameter at breast height (DBH) was measured for all woody vegetation greater than 1.37 meters tall and the number of stems counted.

5.2.3.2 Stream Quantification Tool Analysis

The SQT was implemented at each 100-foot stream reach. Index values (from 0.00 to 1.00) were calculated from the metrics entered for each of the functional categories described above. For parameters incorporating more than one metric, index values were averaged. Parameter scores were then averaged to calculate total functional category scores, and scores weighted and summed by the tool for an overall existing condition score.

Table 5-1. Summary of Parameters and Metrics used in the Stream Quantification Tool

Functional Category	Function-Based Parameters	Metrics		
Hydrology Reach Runoff		Land Use Coefficient		
		Concentrated Flow Points (No./1,000 ft)		
Hydraulics	Floodplain Connectivity	Bank Height Ratio (ft/ft)		
		Entrenchment Ratio (ft/ft)		
	Flow Dynamics	Width/Depth Ratio State (observed/expected)		
Geomorphology	Large Woody Debris (LWD)	LWD Piece Count (No./100 m)		
	Lateral Migration	Dominant BEHI/NBS		
		Percent Streambank Erosion (%)		
	Riparian Vegetation	Buffer Width (ft)		
		Average DBH (inches)		
		Tree Density (No./acre)		
	Bed Form Diversity	Pool Spacing Ratio (ft/ft)		
		Pool Depth Ratio (ft/ft)		
		Percent Riffle (ft/ft)		

Source: South Carolina Steering Committee 2022a; ft= feet/foot; No.= number

5.3 Fish Community Sampling

Fish community sampling was completed in Limber Pole and Howard creeks following the Fish Collection Protocols for Streams (Protocol) as described in the SCDNR Fish Sampling Guidance (SCDNR 2022) for the Blue Ridge ecoregion. Electrofishing reach lengths were determined based on the mean width of the reach with a minimum of 100 meters consistent with the Protocol. Natural obstructions (e.g., riffles, log jams, or falls) were also utilized to define sampling reach boundaries when possible. A calibrated multiparameter water quality data sonde

was used to record existing water quality conditions during sampling events, including temperature, dissolved oxygen, conductivity, pH, salinity, and turbidity.

The number of electrofishing units and netters varied based on stream width and followed the Protocol. Electrofishing crews worked in an upstream direction, and all stunned fish were collected along with any reptiles or amphibians incidentally encountered. Immediately after capture, fish were placed in an aerated five-gallon bucket and processed at the mid-point and/or end of sampling depending on the reach length. All fish were identified to species and a subset of each species was measured for total length to the nearest millimeter.

5.4 Macroinvertebrate Sampling

Aquatic macroinvertebrates are good indicators of water quality due to their sensitivity to changes in physical, chemical, and biological conditions(USEPA 2023). Organisms within the Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera are particularly sensitive to poor water quality and intolerant to pollution, therefore the presence of species within these groups indicate good water quality. Macroinvertebrate surveys were completed following the *SCDHEC Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling* (SCDHEC 2017). This method includes a timed-qualitative multiple habitat sampling protocol to collect macroinvertebrates, which allows for sampling representative macroinvertebrate taxa from the variety of natural habitats within a stream.

Procedures included sampling with kick nets, D-shaped dip nets, and sieves with the goal to collect as many different macroinvertebrate taxa as possible during a specified amount of time in multiple habitat types. More details on sampling methods are included in the following sections. Samples collected from all three sampling methods were combined into a sieve bucket. Organisms are separated or "picked" from the rest of the sample in the field using forceps and picking trays and preserved in glass vials containing 85 percent ethyl alcohol. Organisms were picked in approximate proportion of their abundance and no attempt was made to remove all specimens encountered. Organisms collected and preserved in vials in the field were shipped to a certified taxonomist Pennington & Associates Inc, for identification to the lowest taxonomic level to calculate species taxa richness which is of the number of different kinds of organisms (taxa) in a collection and biotic index score for each site.

5.4.1 Kick Net Collection

A 1.0-meter-square 500-1000-micron mesh net attached between poles was used for kick net sampling in riffles. The kick net was placed downstream of the riffle area sampled and held in place on either side by two biologists to catch macroinvertebrates and debris that drift into the net. The third biologist perturbed the substrate from upstream, including dislodging cobble and small boulders, moving downstream towards the net. Contents collected in the kick net were rinsed into a sieve bucket.

5.4.2 D-frame Dip Net Collection

D-frame dip nets were used to sample root wad habitats, generally located along stream margins, as well as aquatic vegetation, if present. Root wads were sampled by repeatedly thrusting a 500-micron D-frame dip net upwardly into the roots along a stretch of bank until the net was approximately one-quarter full of detritus and root debris. Several randomly selected root wads were also washed down by hand into the dip net to remove firmly attached macroinvertebrates. Aquatic vegetation was sampled by sweeping the dip net through the vegetation. Contents of the dip net sampling were rinsed into the same sieve bucket with the kick net sample for a wholly representative sample of the stream.

5.4.3 Leaf Pack Collection

Mature leaf packs were collected at areas with swift moving water and placed in the sieve bucket and discarded after elutriation. The macroinvertebrates remaining in the sieve bucket were included with those from the kick net and D-frame dip net. Samples from the sieve bucket were transferred to picking trays and macroinvertebrates were removed using forceps and preserved in glass vials containing 85 percent ethyl alcohol.

5.4.4 Visual Collection

The intent of visual collections was to specifically target microhabitats that were not sampled using the aforementioned collection methods. Stream habitat components including large-grained substrate, recessed rock crevices, woody debris, mature leaf packs, roots, and other debris were searched for macroinvertebrates, which were collected directly with forceps and placed in the glass vials containing 85 percent ethyl alcohol.

5.5 Mussel Surveys

Mussel surveys consisted of an assessment for supportive habitat, followed by timed searches where suitable habitat was identified. Suitable habitat was defined as areas with appropriate substrate (sand and gravel), presence of fish hosts for glochidia, and potentially, evidence of live mussels or shells. Mussel habitat was evaluated for streams within potential spoil locations, streams and creeks crossed by the potential temporary access road, and along the portion of Lake Jocassee's shoreline included in the study area.

Mussel surveys followed methods adapted from the USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia (USEPA 2013). The survey consisted of timed visual and tactile searches for mussels in areas identified with suitable habitat. Timed searches were a minimum of four person-hours in Lake Jocassee and one person-hour in creeks. Habitat conditions at each sampling location were recorded including substrate conditions, shoreline composition, and basic water quality parameters (water temperature, dissolved oxygen).

6 Results

6.1 Natural Resource Assessments

The natural resources assessment to identify surface waters and wetlands within potential spoil locations was completed in September 2021 and along the proposed temporary access road in September 2023. The 2021 natural resources assessment report was attached as Appendix E to the Pre-Application Document filed with FERC in February 2022 (HDR 2021). The surface waters and wetlands within the potential spoil locations are summarized in Table 6-1 and depicted on figures provided in Attachment B. Resources identified include nine streams, three wetlands, and one open waterbody.

Table 6-1. Summary of Surface Waters and Wetlands estimated¹ within Potential Spoil Locations

Name	Type	Spoil Location	Extent (linear feet or acres)		
Streams (linear feet)					
Stream 4	Intermittent	G	942		
Stream 4a	Perennial	G	542		
Stream 11	Unknown	J	148		
Stream 13	Intermittent	D	227		
Stream 14	Perennial	D	770		
Stream 17	Perennial	С	286		
Stream 19 (Devils Fork)	Perennial	В	1,129		
Stream 20	Perennial	В	577		
Stream 21	Unknown	В	172		
		Total	4,793		
Wetlands (acres)					
Wetland 4 (isolated)	Emergent	F	0.37		
Wetland 7 (isolated)	Forested	F	1.15		
Wetland 10 (isolated)	Emergent	Е	2.96		
Te			4.48		
Open Waterbodies (acres)					
Lake Jocassee	Freshwater	A	12.7		

¹Extent of surface waters and wetlands was estimated using desktop resources and field investigations. A delineation of surface waters is planned to be completed in 2024.

The 2023 natural resources assessment identified six streams or creeks crossed by the access road if the Bad Creek II Complex is pursued and the Fisher Knob access road is constructed. Streams include Limber Pole Creek, Howard Creek, Devils Fork, and three unnamed tributaries. Additional unnamed tributaries and wetlands were identified and delineated within the 100-foot buffer of the potential temporary access road, however stream habitat quality surveys and mussel surveys completed for this study considered only those crossed by the potential temporary access road. Streams and wetlands estimated or delineated along the temporary access road route are summarized in Table 6-2 and depicted on figures provided in Attachment B. Note that Devils Fork was surveyed at both locations; the survey location of "Stream 19" denoted in Table 6-1 was several hundred feet upstream of the survey location of "Stream 17", where the potential temporary access road would cross this feature.

²Spoil location J was added after filing the Pre-Application Document, however the area was evaluated during the 2021 Natural Resources Assessment.

Table 6-2. Streams and Wetlands identified along the Temporary Access Road

Name	Туре	Extent (linear feet or acres)	Potentially Crossed by Access Road (Y/N)			
Streams (linear feet)						
Stream 1 (Limber Pole Creek)	Perennial	397	Y			
Stream 2	Perennial	273	N			
Stream 3	Perennial	62	N			
Stream 4	Intermittent	314	N			
Stream 5	Perennial	48	N			
Stream 6	Intermittent	621	N			
Stream 7 (Howard Creek)	Perennial	516	Y			
Stream 8	Intermittent	69	N			
Stream 9	Perennial	180	N			
Stream 10	Intermittent	95	N			
Stream 11	Perennial	166	N			
Stream 12	Intermittent	763	Y			
Stream 13	Intermittent	208	N			
Stream 15	Perennial	397	Y			
Stream 16	Perennial	717	Y			
Stream 17 (Devils Fork at road crossing)	Perennial	295	Y			
Stream 18	Intermittent	87	N			
	Wetland	ls (acres)				
Wetland 1	Emergent	0.02	N			
Wetland 2	Emergent	0.01	N			
Wetland 3	Emergent	0.00	N			
Wetland 4	Emergent	0.02	N			
Wetland 5	Emergent	0.02	N			
Wetland 6	Forested	0.16	N			

6.2 Stream Habitat Quality Surveys

Stream habitat quality surveys were completed for streams within potential spoil areas and those potentially crossed by the temporary access road as identified during the Natural Resources Assessment (see Section 6.1); however, USEPA RPB and NCSAM forms were not completed for Stream 11 (spoil location J), Streams 13 and 14 (spoil location D), or 20 and 21 (spoil location B) due to inclement weather which presented a safety concern at the time staff was on site.

6.2.1 Rapid Bioassessment Protocol

USEPA RBP data forms were completed in September 2023 for streams within potential spoil locations and potentially crossed by the temporary access road. All streams scored above 100 in the "optimal" or "suboptimal" range (Table 6-3). Some streams had reduced scores related to limited baseflow conditions (less aquatic habitat) and/or microhabitat characteristics (e.g., presence of epifaunal substrate, level of embeddedness, velocity/depth regime, etc.). USEPA RBP data forms for the assessed streams are provided in Attachment C.

Table 6-3. Summary of USEPA Rapid Bioassessment Protocol Stream Habitat Assessments

Stream Name / Location	Stream Type	Total Score	Condition Category
Streams within Potential Spoil L			
Stream 4 - Spoil Location G	Intermittent	117	Suboptimal
Stream 4a - Spoil Location G	Perennial	137	Suboptimal
Stream 17 - Spoil Location C	Perennial	143	Suboptimal
Stream 19 (Devils Fork) - Spoil Location B	Perennial	155	Optimal
Streams potentially crossed by the Tempo			
Stream 1 (Limber Pole Creek)	Perennial	170	Optimal
Stream 7 (Howard Creek)	Perennial	185	Optimal
Stream 12	Intermittent	126	Suboptimal
Stream 15	Perennial	133	Suboptimal
Stream 16	Intermittent	127	Suboptimal
Stream 17 (Devils Fork)	Perennial	144	Suboptimal

¹Condition categories include Poor, Marginal, Suboptimal, and Optimal.

6.2.2 North Carolina Stream Assessment Method

NCSAM data forms were completed for streams within potential spoil locations and those potentially crossed by the temporary access road in September 2023. All streams were rated as high functioning with the exception of Streams 4 and 4a within spoil location G, and Stream 12 along the proposed temporary access road, which were rated as "medium" primarily due to limited baseflow conditions or, for Stream 4a, related to suboptimal streamside conditions (limited buffer). A summary is provided in Table 6-4 and complete data forms and rating sheets for each stream are included in Attachment D.

Table 6-4. Summary of NC Stream Assessment Method Ratings

Stream Name	Stream Type	NCSAM Overall Functional Rating		
Streams within Potential Spoil Locations				
Stream 4 - Spoil Location G	Intermittent	Medium		
Stream 4a - Spoil Location G	Perennial	Medium		
Stream 17 - Spoil Location C	Perennial	High		
Stream 19 (Devils Fork) - Spoil Location B	Perennial	High		
Streams Potentially Crossed by Temporary Access Road				
Stream 1 (Limber Pole Creek) Perennial High		High		
Stream 7 (Howard Creek)	Perennial	High		
Stream 12	Intermittent	Medium		
Stream 15	Perennial	High		
Stream 16	Intermittent	High		
Stream 17 (Devils Fork)	Perennial	High		

6.2.3 Stream Quantification Tool

6.2.3.1 Hydrology, Hydraulics, and Geomorphology

Stream surveys of hydrology, hydraulics, and geomorphology in support of the SQT were performed October 2-3, 2023. Streams appeared to be typical of those common to the Blue Ridge ecoregion, with limited hydraulic access to the floodplain (i.e., entrenched or moderately entrenched), low sinuosity, and moderate to high stream slopes. Streams were in good condition representative of those absent of anthropogenic influence. Riparian buffers were well vegetated with mature trees, and some areas also contained dense shrubs. Vegetation plots were placed such that each plot was representative of the plant community, structure, and age throughout the reach. Average DBH across reaches ranged from 8.2 to 18.6, with tree density up to 405 trees per acre (Table 6-5). Most streams contained coarse substrate (usually gravel), although bedrock cascades were present in one location. The smaller streams including Stream 12, Stream 16, and Devils Fork contained flow that went subsurface in several areas throughout upstream and/or downstream reaches. Areas where water re-emerged appeared to support relatively high abundance of salamanders. All streams were in stable condition throughout with limited streambank erosion. Vegetation data by plot and representative photographs are provided in Attachment E. Rapid Method forms completed for each stream reach are provided in Attachment F, and representative photographs of surveyed stream reaches are provided in Attachment G.

Table 6-5. Summary of Vegetation Plot Data

Stream/Creek	Reach	Average DBH (inches)	Average Tree Density (No. of trees per acre)
Stream 1	Upstream	9.5	405
(Limber Pole Creek)	Downstream	10.5	223
Stream 7	Upstream	12.3	142
(Howard Creek)	Downstream	8.5	121
Stream 12	Upstream	18.6	243
(UT to Howard Creek)	Downstream	14.7	162
Stream 15	Upstream	8.2	101
(UT to Devils Fork)	Downstream	9.6	223
Stream 16	Upstream	8.6	263
(UT to Devils Fork)	Downstream	10.3	142
Stream 17	Upstream	9.6	202
(Devils Fork)	Downstream	10.9	263

UT = unnamed tributary

6.2.3.2 Stream Quantification Tool Analysis

Information gathered during stream surveys of the lower-level functional categories (hydrology, hydraulics, geomorphology [including riparian vegetation]) were used for Rosgen classification and input to the SC SQT to develop an overall Existing Condition Score for each stream reach. Higher-level functions (physiochemical and biology) were not included. The maximum potential Existing Condition Score the streams could receive was 0.6 (0.2 per functional category) (South Carolina Steering Committee 2022b).

Most streams surveyed exhibited entrenched or moderately entrenched conditions, low sinuosity, and coarse bed material. Width-depth ratios and slope were variable. The majority of streams were classified as Rosgen B-type streams, with G-type streams noted in areas exhibiting streambank erosion, and one A-type stream. B-type streams exhibit moderate gradient with moderate entrenchment and width/depth ratios, dominated by riffle features with infrequently spaced pools. A-type streams are entrenched and confined, high-gradient streams with frequently spaced pools associated with step/pool morphology. Both A and B type streams have stable plan and profile, and stable banks. G-type streams are more unstable, entrenched streams exhibiting low width/depth ratio, moderate gradients, and high bank erosion rates.

All reaches were rated to have a "good" catchment assessment due to the limited development of the upstream drainage areas. Although typical of A, B, and G-type streams, entrenched and moderately entrenched streams were rated poorly by the SQT under the hydraulics functional category due to these streams' limited access to the floodplain. Other factors which reduced existing condition scores include streams with streambank erosion (such as the upstream reach of Stream 15 or downstream reach of Stream 16) or a limited large woody debris present (such as the upstream reach of Stream 12, and upstream and downstream reaches of Stream 15).

Stream 15 was the only stream with bedrock cascades, classified as a Rosgen A1a+ type stream with high gradient, entrenchment, no large woody debris and no streambank erosion noted. Riffles were uncommon, though small pools at the base of cascades were present. Although this reach would be considered stable, its limited access to the floodplain, constrained floodplain extent (i.e., flood prone width), lack of large woody debris, and low bedform diversity resulted in a low and moderate score for hydraulics and geomorphology functional categories.

Overall, the streams surveyed along the temporary access road generally exhibited stable, high-quality, potential reference reach-type conditions (Table 6-6). The SQT catchment assessments and existing condition matrix summaries for each stream reach are provided in Attachment J.

Table 6-6. Summary of Stream Characteristics

Stream/Creek	Reach	Entrenchment Ratio	Width/ Depth Ratio	Sinuosity	Slope	Bed Material (D50)	Rosgen Classification	Catchment Assessment	SQT Existing Condition Score	Maximum SQT Existing Condition Score	Percent Stream Functionality	Reach Description
Stream 1 (Limber Pole Creek)	Upstream	Moderately entrenched to entrenched	Moderate	Low	Moderate	11.30 (medium gravel)	B4	Good	0.48	0.6	80%	The upstream reach of Limber Pole Creek was densely covered with mountain laurel along the riparian zone. A small amount of active streambank erosion was present comprising approximately 6% of the reach. A small (low-discharge) tributary entered the creek at station 50.
	Downstream	Moderately entrenched to entrenched	High	Low	Low	14.55 (medium gravel)	B4c	Good	0.50	0.6	83%	The downstream reach of Limber Pole Creek was similar to the upstream reach and also densely vegetated with mountain laurel. All streambanks were stable.
Stream 7 (Howard	Upstream	Moderately entrenched to entrenched	High	Low	Low	34.60 (very coarse gravel)	B4c	Good	0.45	0.6	75%	The upstream reach of Howard Creek exhibited conditions typical of B-type streams in the Blue Ridge ecoregion. Some bank erosion was noted comprising 16.5% of the reach, primarily attributable to lateral drainage (i.e., a swale input) or in-channel woody debris influences.
Creek)	Downstream	Moderately entrenched to entrenched	High	Low	Moderate to high	56.69 (very coarse gravel)	B4a	Good	0.44	0.6	73%	The downstream reach of Howard Creek exhibited entrenchment and moderate width-to-depth ratio typical of B-type streams in the Blue Ridge ecoregion. A cascade approximately 20 inches high was present at station 96.5.
g, 12	Upstream	Entrenched	Moderate	Low	High	14.29 (medium gravel)	B4a	Good	0.39	0.6	65%	Stream 12 was an intermittent stream covered in many areas with dense in vegetation, primarily mountain laurel. Some water was present at the time of survey. The channel had high gradient with step-pools. No streambank erosion was noted.
Stream 12 (UT to Howard Creek)	Downstream	Moderately entrenched	Moderate	Moderate	Moderate to high	3.13 (very fine gravel)	B4a	Good	0.48	0.6	80%	The downstream reach of Stream 12 contained a small amount water at the time of survey. Step-pool features were observed for the most upstream portion of the stream before the flow went subsurface between station 49 and 54.2. A small amount of streambank erosion was present on an outside meander (5% of channel).
Stream 15 (UT to Devils Fork)	Upstream	Entrenched	Low	Low	Moderate	1.36 (very coarse sand)	G5	Good	0.37	0.6	62%	The upstream reach of Stream 15 was adjacent to a 0.16-acre forested wetland area. The stream contained limited flow at the time of survey, however a moderate amount of streambank erosion was present (approximately 26.5 percent). The stream diverged around a "forested island" in the upstream end of the reach.
	Downstream	Entrenched	Low	Low	Very high	(bedrock)	A1a+	Good	0.36	0.6	60%	The downstream reach of Stream 15 exhibited very high gradient with bedrock cascades. Limited stream flow resulted in sheetflow across the bedrock. Small pools

Stream/Creek	Reach	Entrenchment Ratio	Width/ Depth Ratio	Sinuosity	Slope	Bed Material (D50)	Rosgen Classification	Catchment Assessment	SQT Existing Condition Score	Maximum SQT Existing Condition Score	Percent Stream Functionality	Reach Description
												were present at the base of cascades. No bank eroding in this reach was noted.
Stream 16	Upstream	Moderately entrenched to entrenched	Moderate	Low	Moderate to high	10.20 (medium gravel)	B4a	Good	0.45	0.6	75%	The upstream reach of Stream 16 exhibited a riffle-pool pattern with stable banks and a moderate to high gradient. The stream originated at station 3.5 (subsurface from 0.0 to 3.5).
(UT to Devils Fork)	Downstream	Entrenched	Low	Low	Moderate	20.13 (coarse gravel)	G4	Good	0.37	0.6	62%	The downstream reach of Stream 16 exhibited a moderate to high gradient and a moderate amount of streambank erosion comprising 23.5% of the reach. The lower 17 feet of the reach (station 83 to 100) was subsurface.
Stream 17 (Devils Fork)	Upstream	Moderately entrenched to entrenched	Low to moderate	Low to moderate	Moderate to high	9.32 mm (medium gravel)	B4a	Good	0.40	0.6	67%	The upstream reach of Devils Fork was a perennial feature that flowed subsurface periodically throughout the reach; approximately 27.5% of the stream channel was dry due to the disappearance of flow underground. The upstream reach exhibited high grade with step-pool features and little bank erosion present.
(Deviis Polk)	Downstream	Moderately entrenched to entrenched	High	Low to moderate	Moderate	0.45 (medium sand)	В5	Good	0.37	0.6	62%	The downstream reach of Devils Fork was similar to the upstream reach in that approximately 20% of the surface water flow would disappear underground periodically through the reach. No areas of bank erosion were identified.

¹Rosgen classification was based on an overall stream reach metrics with consideration of the "continuum of physical variables" (Rosgen 1994, 1996) and best professional judgement of Rosgen-trained scientists.

6.3 Fish Community Sampling

In accordance with the Protocol, one electrofishing unit and one netter was used for the upstream reach of Stream 1, and two electrofishing units and two netters were used at all other reaches. Surveys were completed upstream and downstream of the road crossings on July 25 and 26, September 5 and 6, and October 9 and 10, 2023. The four stream reaches maintained consistent species diversity over the three sampling events. No fish were collected in either reach of Stream 1 during 2023. Two species of fish, Rainbow Trout (*Oncorhynchus mykiss*) and Western Blacknose Dace (*Rhinichthys obtusus*), were collected in both reaches of Stream 7 during all sampling events. Fish survey details including stream characteristics, sampling effort, water quality data, number of fish collected, catch rate, and fish density is provided in Attachment H. In addition to the two species of fish collected, numerous aquatic salamanders from the genus *Desmognathus* were captured in both Stream 1 and Stream 7. The salamanders were captured in every reach during each sampling event, ranging from two to 15 individuals.

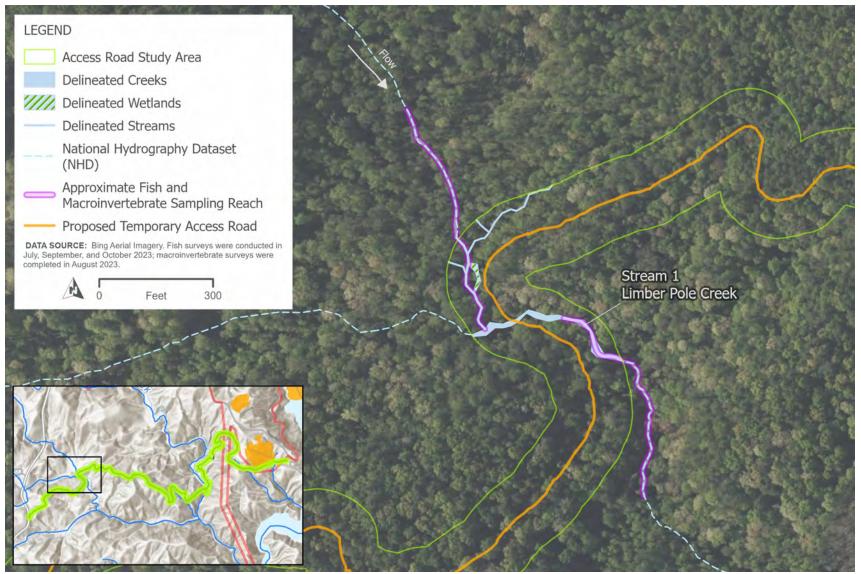


Figure 6-1. Fish and Macroinvertebrate Sampling Reaches on Stream 1 (Limber Pole Creek)

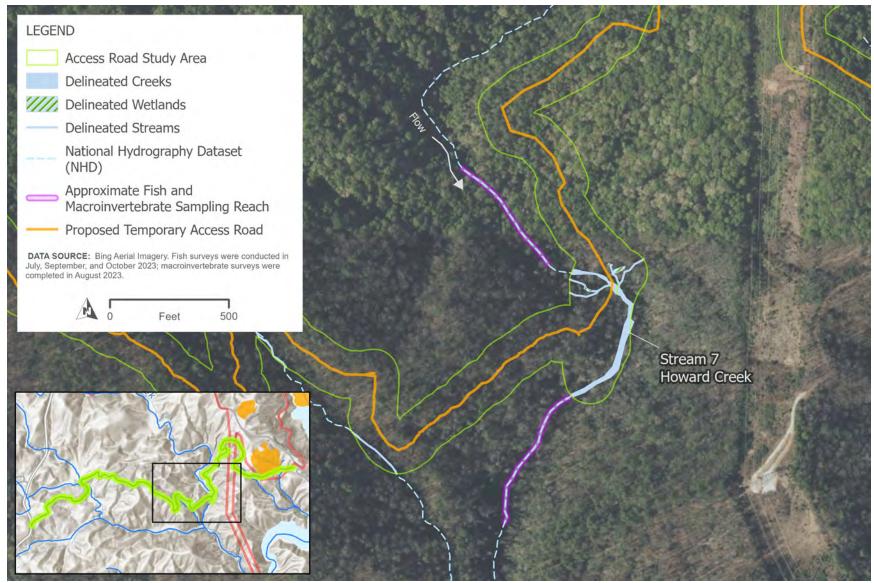


Figure 6-2. Fish and Macroinvertebrate Sampling Reaches on Stream 7 (Howard Creek)

6.4 Macroinvertebrate Sampling

Macroinvertebrate sampling was completed in Streams 1 and 7. One survey per stream reach was conducted on August 1 and 2, 2023, which is within the recommended index period (June 15, 2023, to September 15, 2023, for the Blue Ridge ecoregion). Stream reach lengths were the same as those sampled during fish community sampling conducted in July 2023 (see Figure 6-1, Figure 6-2, and Attachment H).

Biotic and EPT indices and scores were developed from the laboratory-identified taxa in accordance with the SCDHEC (2017) SOP (Table 6-7). The biotic index (BI) for a sample is a weighted average of the tolerance values referenced in SCDHEC's SOP Appendix 5 for organisms collected in sample with respect to their relative abundance. The BI value is scaled from 0.0 to 10.0, with 10 representing relative tolerance to general stressors, with lower values representing more pristine conditions.

The EPT taxa are a subset of benthic macroinvertebrate species belonging to the insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) which are highly sensitive and intolerant to pollution. The EPT index represents the total number of EPT taxa collected at a site with higher values indicating higher water quality.

The BI and EPT scores are weighted based on ecoregion. The BI and EPT scores are averaged to produce a combined score to determine the bioclassification of streams in South Carolina with the highest value equaling 5.0 and the lowest 1.0. The scores are rounded to show a single decimal and are rated as follows: 1 = Poor, 2 = Fair, 3 = Good-Fair, 4 = Good, and 5 = Excellent.

Full taxonomic identification results are provided in Attachment I.

Table 6-7. Stream Bioclassification Scores¹ for Stream 1 (Limber Pole Creek) and Stream 7 (Howard Creek)

Metrics	Limber	Pole Creek	Howard Creek		
Metrics	Upstream	Downstream	Upstream	Downstream	
Total No. of Organisms	163	161	319	246	
Total No. of Taxa	35	29	39	39	
EPT Index	27	21	30	28	
Biotic Index Assigned Values	1.68	2.04	2.98	2.25	
EPT Score	3.93	3.19	4.31	4.06	
Biotic Index Score	9.04	8.57	7.31	8.29	
	6.49	5.88	5.81	6.17	

	≺

Metrics	Limber	Pole Creek	Howard Creek	
Wietrics	Upstream	Downstream	Upstream	Downstream
South Carolina Bioclassification	Excellent/Fully Supporting		2	

¹See SCDHEC (2017) for details on EPT, Biotic Index, and Biotic Index Assigned Value scores for the Blue Ridge ecoregion.

Water quality parameters were collected in conjunction with the macroinvertebrate sampling (see Table 6-8). A water quality meter (YSI Sonde) was calibrated and used to record ambient stream temperature, pH, dissolved oxygen, and conductivity. Stream 1 and Stream 7 are classified by the SCDHEC as Natural Trout (TN) waters. The results recorded in the field met the SCDHEC's surface water quality standards for TN classification (SCDHEC 2023).

Table 6-8. Water Quality Results Summary during Macroinvertebrate Sampling

Water Quality Dayameter	Limber	Pole Creek	Howard Creek		
Water Quality Parameter	Upstream	Downstream	Upstream	Downstream	
Water Temperature (°C)	19.5	20.2	19.2	19.2	
Dissolved Oxygen (mg/L)	8.31	8.24	8.77	8.87	
Dissolved Oxygen (%)	N/A	91.0	94.9	96.0	
pH (SU)	6.10	6.89	7.42	7.44	
Conductivity (µmhos/cm)	94.9	92.4	99.5	100.7	

Macroinvertebrate sampling also included a review of the abundance and diversity of microhabitat types and conditions. Most habitat types or characteristics scored good to excellent with the exception of mature leaf packs, aquatic vegetation, presence of braided channels, and pine needles in streams. The forests surrounding the creeks were dominated by deciduous species and therefore limited, if any pine needles were present. The streams were also well shaded, which limits aquatic vegetation (or algae) growth. The high position (i.e., headwaters) in the watershed also limits the amount of nutrient input needed for aquatic plant growth, as well as the type of stream morphology, i.e., braided channels – the streams assessed are not conducive to braided channel formation due to steeper slopes (Table 6-9).

Table 6-9. SCDHEC Aquatic Biology Section Habitat Assessment Summary

Habitat Tyma	Limber	Pole Creek	Howard Creek		
Habitat Type	Upstream	Downstream	Upstream	Downstream	
Root Banks	Good	Good-Fair	Good-Fair	Good	
Logs, Sticks, Snags	Good	Good-Fair	Good-Fair	Good-Fair	

Ī		
	_ 1	_
		1

Habitat Typo	Limber	Pole Creek	Howard Creek		
Habitat Type	Upstream	Downstream	Upstream	Downstream	
Rock/Gravel Riffle	Good	Excellent	Excellent	Excellent	
Mature Leaf Pack	Poor	Poor	Poor	Poor	
Aquatic Vegetation	Good-Fair	Nonexistent	Poor	Poor	
Braided Channel	Nonexistent	Nonexistent	Nonexistent	Nonexistent	
Amount of Pine Needles in Stream	Nonexistent	Nonexistent	Nonexistent	Nonexistent	
Velocity/Flow	Good	Good	Good	Good	
Sedimentation	Little or none	Moderate	Little or none	Little or none	

The SCDHEC SOP adopted the USEPA's Revisions to Rapid Bioassessment Protocols for Use in Streams and Rivers and also developed a simplified form to meet the specific needs of the SCDHEC's Aquatic Biology Section. Other species observed but not collected included fish, crayfish, and salamanders, were recorded on the Macroinvertebrate Habitat Assessment Forms. Completed habitat assessment forms are located in Appendix I and a summary of the Aquatic Biology Section Habitat Assessment results are presented above in Table 6-9.

6.5 Mussel Surveys

Freshwater mussel habitat assessments were conducted in July and August, 2023. Consistent with the RSP, Duke Energy biologists surveyed potential upland spoil locations for mussel habitat and determined that no supportive habitat is present for mussel assemblages due to an absence of fish hosts necessary for mussel reproduction. SCDNR concurred with this assessment during the July 12, 2023, site visit to two potential spoil locations with streams representative of those in the area. With this conclusion, no mussel searches were completed at these locations.

Stream 1 and Stream 7 contained suitable habitat for mussels consisting of diverse substrates and creek shoreline complexity, although no fish were captured during electrofishing in Limber Pole Creek. Searches in these two streams totaling one person-hour each yielded no freshwater mussels or shells. Mussel searches were again conducted during electrofishing surveys in September and October, yielding no direct mussel observations or evidence of past or present mussel presence (shells). During the three searches in each of these two creeks, water temperature ranged from 11.6°Celsius (°C) to 20.8°C, and dissolved oxygen ranged from 7.9 milligrams per liter (mg/L) to 9.9 mg/L.

A length of approximately 600 meters of shoreline along the western shore of the Whitewater River arm of Lake Jocassee near the Bad Creek inlet/outlet structure and proposed location of the Bad Creek II Complex inlet/outlet structure was surveyed for suitable freshwater mussel habitat. This survey found a band of suitable sand habitat which stretched approximately 200 meters from the base of Whitewater Falls to the proposed location of the Bad Creek II Complex inlet/outlet structure (Figure 6-3). Three other small coves in the Whitewater River arm also exhibited suitable sand habitat to support freshwater mussels. Four total person-hours of searching these areas in Lake Jocassee yielded no freshwater mussels or shells. Non-native Asian clams (*Corbicula fluminea*) were identified, although their distribution was uncommon and patchy. During the survey, the water temperature was 27.5°C with 7.9 mg/L dissolved oxygen.

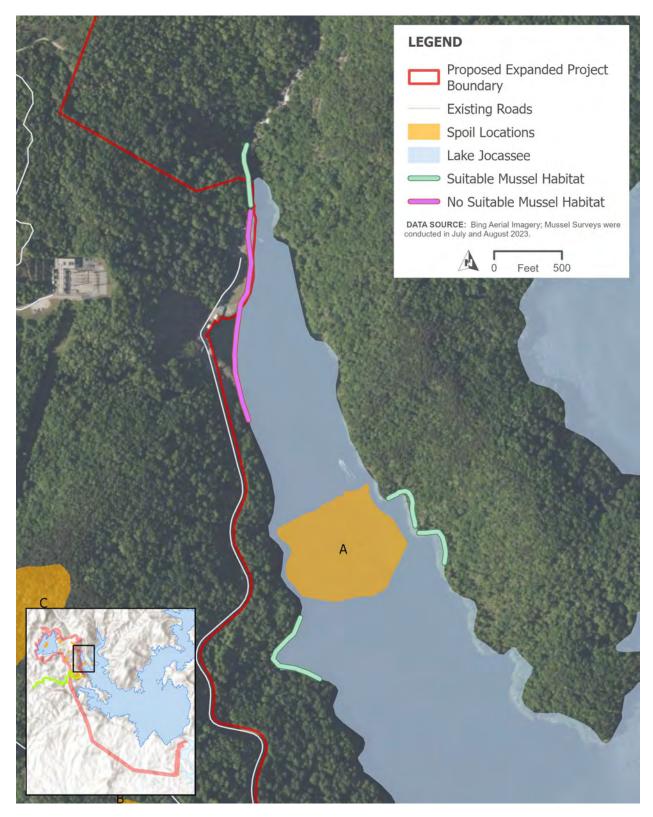


Figure 6-3. Mussel Habitat Survey Areas along Lake Jocassee Shoreline

7 Conclusions

The USEPA RBP and NCSAM methods of stream habitat quality assessments indicate that the streams within potential spoil locations and those potentially crossed by the proposed temporary access road are in fully functioning condition. Although the SQT rated streams along the temporary access road relatively low, the streams are generally in stable, functioning condition for the stream classification and characteristics which they exhibit (e.g., entrenchment). While field crews were unable to complete USEPA RBP and NCSAM forms for streams 13, 14, 20, or 21 (within potential spoil locations B and D), consistent with SCDNR determination during the July 2023 site visit (see Section 6.2.3), it is likely that these streams also present fully functioning conditions.

Macroinvertebrate surveys of Stream 1 and Stream 7 found abundant EPT taxa and habitat conditions, resulting in a high bioclassification score indicating a fully supporting system. While fish community sampling resulted in limited fish species collected from Stream 7 and none from Stream 1, this is typical of streams high in the watershed where flow may be limited in areas and high gradient sections of stream may include natural barriers to upstream movement.

No mussel habitat was identified in streams within potential spoil locations. Although suitable mussel habitat was present in Stream 1, Stream 7, and areas of shoreline in Lake Jocassee, no native mussels were observed during any of the surveys.

7.1 Impacts Assessment

Impacts to streams and wetlands within potential spoil areas would consist of fill due to the placement of French drains, followed by placement of overburden (rock) generated by the construction of the Bad Creek II Complex. French drains would be used to maintain connection of flow to downstream waters, however the surface waters and wetlands within the potential spoil locations would no longer be available as habitat to the organisms currently utilizing them. Additional evaluations are currently underway to determine natural resource impacts for the different potential spoil areas, and these evaluations are expected to inform eventual spoil site selection.

If the Bad Creek II Complex is pursued and the temporary access road is constructed, limited, if any impacts to streams crossed by the access road are expected. Streams would be spanned by bridges to avoid direct impact to streams, and best management practices, such as silt fencing, would be installed to prevent any incidental water quality impacts caused by temporary land disturbance. The road would be decommissioned following the construction completion of the Bad Creek II Complex and bridges removed.

No impacts to mussels are expected, as no native mussels were observed in the vicinity of the current or future inlet/outlet structure, or in the vicinity of the expanded underwater weir. A minor portion of suitable mussel habitat located immediately upstream of the proposed inlet/outlet structure for the Bad Creek II Complex could be impacted due to construction activities, however, as stated, no mussels were identified in this area during surveys. Aquatic organisms in Lake Jocassee would experience short-term water quality effects due to expansion of the weir (i.e., placement of rock/overburden on and in the vicinity of the existing weir) and construction of the Bad Creek II Complex inlet/outlet structure. Per the Water Resources RSP, a Water Quality Monitoring Plan will be developed in consultation with stakeholders and focused on the pre-construction, construction, and post-construction of the Bad Creek II Complex, with key components including 1) the construction of the inlet/outlet structure and expansion of the submerged weir; 2) construction in upland areas; and 3) potential upland spoil disposal.

Compensatory mitigation will be required for unavoidable impacts to surface waters (including wetlands) that are regulated under Section 404 of the Clean Water Act to ensure that impacts to aquatic resources are avoided or minimized to the greatest extent possible. Mitigation options may include on-site restoration and/or purchase credits from an approved in-lieu fee mitigation bank to offset unavoidable adverse impacts.

8 Variances from FERC-approved Study Plan

The USEPA RBP and NCSAM forms for five streams within potential spoil locations B, D, and J were not completed as required by the RSP due to safety concerns related to inclement weather. As with other streams within potential spoil locations or observed along the proposed temporary

FDS

access road, and consistent with SCDNR determination during the July 2023 site visit (see Section 6.2.3), it is likely that these streams also present fully functioning conditions.

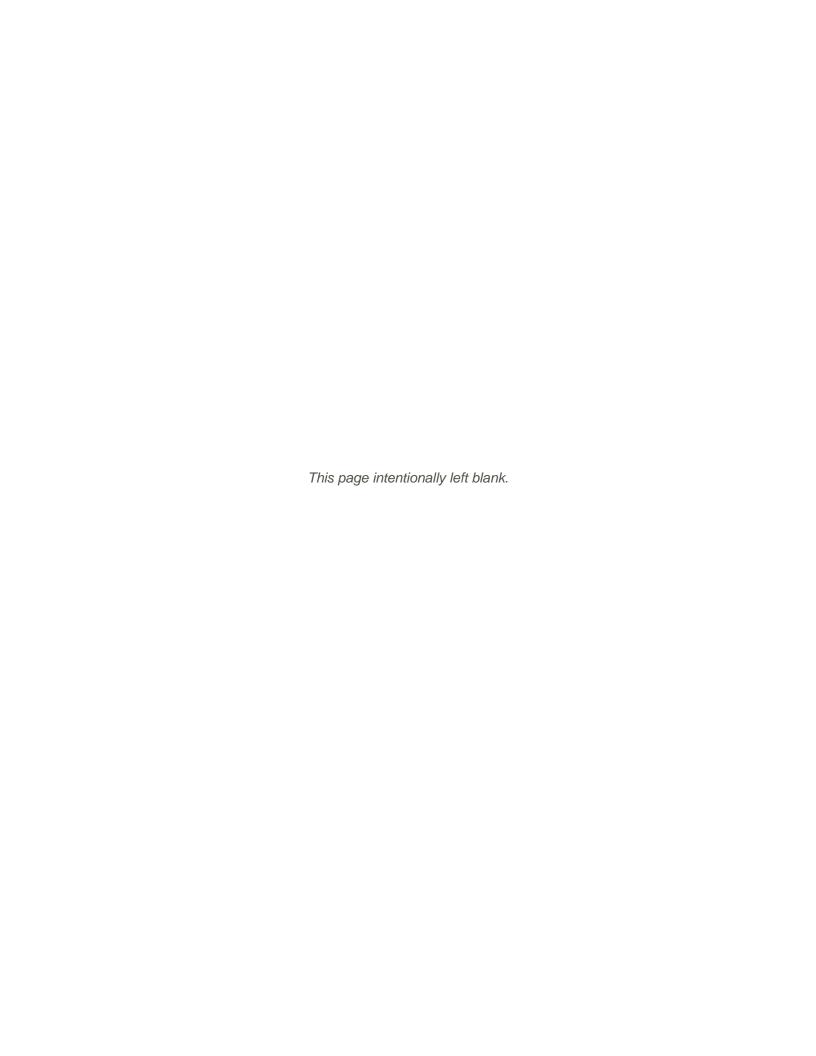
Additional acreage was included in the study area originally presented in the RSP to assess potential impacts to natural resources associated with construction of a temporary access road to the south of the Project. The temporary access road would provide ingress and egress to homeowners of the Fisher Knob community during construction, which requires public closure of Bad Creek Road. Additionally, methods for determining stream quality were expanded to include the SQT methodology, which was completed in collaboration with the SCDNR.

9 Germane Correspondence and Consultation

Germane correspondence and consultation documentation related to Task 3 of the Aquatic Resources Study is summarized in Table 10-1 and included in Attachment 4 of the Aquatic Resources Draft Study Report.

Table 10-1. Summary of Germane Correspondence and Consultation related to Task 3 of the Aquatic Resources Study

Date	Correspondents	Торіс
April 19, 2023 (e-mail)	Duke Energy to Aquatic Resources RC	Transmittal of April 6, 2023, entrainment meeting summary and proposal to use the NCSAM (request for comment)
May 8, 2023 (e-mail)	SCDNR to Duke Energy	Request to use the SC SQT to evaluate streams to be assessed under Task 3 of the Aquatic Resources Study
May 9, 2023 (e-mail)	Duke Energy to SCDNR	Acknowledgement of request receipt
May 24, 2023 (virtual meeting)	Duke Energy and SCDNR	Virtual meeting with SCDNR to discuss methodology and applicability of the SQT to streams within spoil locations and along the proposed temporary access road
June 9, 2023 (e-mail)	Duke Energy to SCDNR	Transmittal of meeting minutes summary from May 24, 2023, discussion and Stream Survey Approach Memo with request for comment
June 16, 2023 (e-mail)	SCDNR to Duke Energy	Comments on Stream Survey Approach Memo
June 21, 2023 (virtual meeting)	Duke Energy and SCDNR	Virtual meeting with SCDNR to discuss SQT methodology and applicability to streams within spoil locations and along the proposed temporary access road, as well as the SQT debit calculator
June 23, 2023 (e-mail)	Duke Energy to SCDNR	Transmittal of meeting minutes summary from May 24, 2023, discussion



Date	Correspondents	Торіс
June 23, 2023 (e-mail)	SCDNR to Duke Energy	Comments on May 24, 2023, meeting summary
July 12, 2023 (in-person)	Duke Energy and SCDNR	Site visit to Spoil Locations B and G on the Bad Creek II Complex project site
August 3, 2023 (e-mail)	Duke Energy to the Aquatic Resources RC	Transmittal of the revised Stream Survey Approach Memo
September 18, 2023 (e-mail)	Duke Energy to SCDNR	Question regarding number of riparian vegetation survey plots required for survey in support of the SQT
September 23, 2023 (e-mail)	SCDNR to Duke Energy	Response to question regarding the number of riparian vegetation survey plots required
November 17, 2023	Duke Energy to the Aquatic Resources RC	Distribution of the Task 3 Aquatic Resources Impacts to Surface Waters and Associated Aquatic Fauna Draft Report
December 18, 2023 (virtual meeting)	Duke Energy and SCDNR	Virtual meeting with SCDNR to discuss comments on the Aquatic Resources Impacts to Surface Waters and Associated Aquatic Fauna Draft Report
December 21, 2023	Duke Energy to SCDNR	Transmittal of meeting minutes summary from December 18, 2023, discussion
December 21, 2023	SCDNR to Duke Energy	Comment on meeting summary from December 18, 2023
December 21, 2023	SCDNR to Duke Energy	Transmittal of comments on Aquatic Resources Impacts to Surface Waters and Associated Aquatic Fauna Draft Report
December 22, 2023	Duke Energy to SCDNR	Transmittal of Natural Resources Assessment report and spatial file for streams located along the temporary access road
December 31, 2023	SCDNR to Duke Energy	Comments on the meeting summary from December 18, 2023
January 9, 2024	Duke Energy to SCDNR	Transmittal of revised meeting minutes summary from the December 18, 2023, meeting

10 References

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Duke Energy Carolinas, LLC (Duke Energy). 2022. Appendix D Aquatic Resources Revised Study Plan, Bad Creek Pumped Storage Project FERC Project No. 2740. Prepared by HDR Engineering, Inc. December 2022.
- Gordon, N.D., T.A. McMahon, and B.L. Finlayson. 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley & Sons, New York. 526 pp.
- HDR Engineering of the Carolinas, Inc. (HDR). 2021. Bad Creek II Power Complex Project Natural Resources Assessment. Prepared for Duke Energy Carolinas, LLC. November 2021.
- . 2023. Aquatic Resources Study Approach to Stream Surveys Revised Post-Consultation. Memo provided to South Carolina Department of Natural Resources on behalf of Duke Energy Carolinas, LLC. July 2023.
- Lee, M.T., Peet, R.K., Roberts, S.D., & Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation All Levels of Plot Sampling, Version 4.2.
- North Carolina Division of Water Quality (NCDWQ). 2010. Methodology for Identification of Intermittent and Perennial Streams and Their Origins (Version 4.11).
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NCSAM) Draft User Manual. March 2013. Accessed October 2023. [URL]: https://www.saw.usace.army.mil/Portals/59/docs/regulatory/publicnotices/2013/NCSAM_Draft_User_Manual_130318.pdf.
- Rosgen, D.L. 1994. A classification of natural rivers. Catena 22(3): 169-199.
- Rosgen, D.L.1996. Applied River Morphology, 2nd Edition. Wildland Hydrology, October 1, 1996. 378 pp.
- South Carolina Department of Health and Environmental Control (SCDHEC). 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.
- . 2023. Regulations 61-68 Water Classifications and Standards. S.C. Code Sections 48-1-10 et seq. Available at: https://scdhec.gov/sites/default/files/Library/Regulations/R.61-68.pdf#page=30.

- South Carolina Department of Natural Resources (SCDNR). 2020. Stream Geomorphology Data Collection and Analysis South Carolina Ecoregions 66, 45, 65, 63. Prepared by Jennings Environmental, PLLC.
- . 2022. Fish Sampling Guidance Fish Collection Protocols for Streams. Dated August 11, 2022.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Wetlands Research Program Technical Report Y-87-1. January 1987.
- _____. 2012. Regional Supplement of the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). U.S. Vicksburg, Mississippi. April 2012.
- U.S. Environmental Protection Agency (USEPA). 2013. Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia. EPA 800-R-13-003. August 2013.
- . 2023. Indicators: Benthic Macroinvertebrates. Accessed January 18, 2024. [URL]: https://www.epa.gov/national-aquatic-resource-surveys/indicators-benthic-macroinvertebrates.

Attachment A

Attachment A - Aquatic Resources Study Approach to Stream Surveys Memo

Memo

Date:	Wednesday, July 26, 2023
Project:	Bad Creek Pumped Storage Project Relicensing
To:	South Carolina Department of Natural Resources
From:	HDR Engineering of the Carolinas, Inc.
Subject:	Aquatic Resources Study Approach to Stream Surveys – Revised Post-Consultation

Project Understanding

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (Federal Energy Regulatory Commission [FERC] Project No. 2740) located in Oconee County, South Carolina. Duke Energy is pursuing a new license for the Project and in accordance with 18 Code of Federal Regulations §5.11, developed a Revised Study Plan (RSP) which proposed six studies for Project relicensing, including an Aquatic Resources Study. The goal of the Aquatic Resources Study is to evaluate potential impacts to fish and aquatic life populations, communities, and habitats due to the potential construction and operation of an additional power complex (Bad Creek II Power Complex [Bad Creek II Complex]) adjacent to the existing Project. The Aquatic Resources Study is ongoing.

As additional information, Duke Energy is proposing the development of an access road to provide an alternate route to the Fisher Knob community, for use during Bad Creek II construction. The access road is not presently included in the proposed expanded FERC Project Boundary and was not yet planned at the time of preparation of the RSP. Consistent with the objective of the Aquatic Resources Study to "evaluate the aquatic resources (streams, wetlands, and Lake Jocassee) that may experience direct impacts from spoil placement or other construction activities", Duke Energy plans to evaluate surface waters that may be crossed by the access road in addition to waters within potential spoil locations as described in the RSP.

Approach to Streams within Potential Spoil Locations

According to preliminary studies and estimates for proposed material removed from underground excavations for the Bad Creek II Complex, approximately 4 million cubic yards of overburden material for the project infrastructure will need to be deposited at upland spoil locations or along the submerged weir in Lake Jocassee (Attachment 1). An additional spoil area related to the construction of a proposed transformer yard, potential spoil location J, adds an approximately 0.4 million cubic yards to the overburden amount, for a total of 4.4 million cubic yards. Nine potential streams are present within the proposed on-site spoil locations (see Table 1 and Attachment 1). Surface waters (including wetlands) in these locations were evaluated in the field during the Natural Resources Assessment completed by HDR in September 2021 (HDR 2021; Appendix E of the Pre-Application Document filed with FERC on February 23, 2022).

Consistent with the RSP, Duke Energy will complete U.S. Environmental Protection Agency (USEPA) Rapid Bioassessment Protocol (USEPA RBP; Barbour et al. 1999) stream habitat assessments for all streams within potential spoil locations. During the Joint Resource

Committee Meeting on February 22, 2023, and the Aquatic Resources Study Resource Committee Meeting held on April 6, 2023, committee members expressed interest in biological assessments. In follow-up correspondence with the Aquatic Resources Committee, Duke Energy proposed to complete stream assessments using the North Carolina Stream Assessment Method (NCSAM; N.C. Stream Functional Assessment Team 2013) in addition to the USEPA RBP.

The South Carolina Department of Natural Resources (SCDNR) also requested that Duke Energy use the SCDNR Stream Quantification Tool (SQT)¹ (South Carolina Steering Committee 2022) for stream assessments. Duke Energy consulted with the SCDNR on May 24 and June 21, 2023, to discuss the applicability and methodology of the SQT. Duke Energy, HDR, and SCDNR also participated in a site visit to Bad Creek on July 12, 2023. The site visit included Alan Stuart (Duke Energy), Allan Boggs (Duke Energy), Nick Wahl (Duke Energy), Eric Mularski (HDR), Erin Settevendemio (HDR), and Lorianne Riggin (SCDNR). The group visited spoil locations B and D (see figures in Attachment 1), which were considered locations with representative conditions of stream and riparian habitat. During the site visit, SCDNR and Duke Energy agreed that the streams within spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for streams within spoil locations was not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, field surveys of the streams within potential spoil locations applying the SQT methodology are not required.

Approach to Streams Crossed by the Access Road to the Fisher Knob Community

The potential access road would require crossings at three named streams (Limber Pole Creek, Howard Creek, and Devils Fork) and potentially other unidentified streams (see figures provided in Attachment 2). Currently, two access road routes are being considered, however only one would be developed. The routes diverge just west of Howard Creek, where Option 1 crosses Howard Creek and heads north across a ridge. Option 2 crosses Howard Creek and heads south along the left bank of Howard Creek before directing northeast. The road options converge east of the transmission line corridor west of Devils Fork. It is anticipated that Option 1 would result in fewer riparian buffer impacts and therefore this is the preferred route.

Based on review of two-foot topography contour maps, an additional three streams may be present along the access road, though the flow of these streams is currently unknown. A surface waters delineation is scheduled for mid-late August to identify stream conditions/flow of these unnamed features. If Duke Energy develops the access road, streams and creeks along the alignment will likely be spanned by [temporary] bridges. Duke Energy will conduct field assessments using the SCDNR SQT to evaluate stream function as a baseline prior to construction activities to document any changes that may occur, though none are anticipated.

Streams crossed by the access road will be assessed with the USEPA RBP and NCSAM. Stream assessments will be conducted upstream and downstream of each road crossing. The intent is to document a baseline, existing condition of the stream before the construction of the access road. When and if the road is decommissioned, the streams would be re-assessed to compare to the baseline condition. Additionally, evaluating the streams at upstream and downstream locations

¹ SCDNR Stream Quantification Tool

allows an opportunity to document changes that may have happened elsewhere (i.e., upstream) in the watershed or as a result of other factors, such as storm events.

Proposed Field Methods

Numerous methods for stream habitat and biological assessments will be used for evaluating streams in the vicinity of the Project. Field methods to be implemented at each stream are based on consultation with the Aquatic Resources Study Resource Committee (RC) and SCDNR, as discussed above. The following summary provides an overview of planned field methods for streams within spoil locations and those crossed by the potential access road.

USEPA Rapid Bioassessment Protocol

In accordance with the RSP, the USEPA RBP stream habitat assessment will be completed at all streams within spoil locations. Barbour et al. (1999) states, "an evaluation of habitat quality is critical to any assessment of ecological integrity". Stream habitat assessments are defined as the "evaluation of the structure of the surrounding physical habitat that influences the quality of the water resource and the condition of the resident aquatic community" (Barbour et al. 1999). These assessments provide information regarding stream functionality and condition, which in turn can indicate the value of aquatic habitat to aquatic and terrestrial life, and ecosystem services such as nutrient reduction and support of watershed health. The USEPA RBP includes an evaluation of the variety and quality of (1) stream substrate, (2) channel morphology, (3) bank structure, and (4) riparian vegetation. Ten parameters within the four categories are rated on a numerical scale for each sampled reach.

NC Stream Assessment Method

The NCSAM provides "an accurate, reproducible, rapid, observational, and science-based field method to determine the level of stream function relative to a reference condition" (N.C. Stream Functional Assessment Team 2013). While the NCSAM was developed for use in North Carolina, the Project is just a few miles from the North-South Carolina border and stream categories identified for the method include those in the Blue Ridge ecoregion, where the Project is located. Similarities between topography and streams in the Carolinas allow this method to provide valuable information regarding the overall function of streams with a simple and efficient tool.

The NCSAM rates streams for three Class 1 functions: hydrology, water quality, and habitat. Within each Class 1 function, streams are rated for up to eight Class 2 functions, which may include Class 3 and Class 4 functions. The functions provided by a stream are a product of the hydrologic, geologic, morphologic, and vegetational setting of the stream and its drainage area (Gordon et al. 1992 as cited by N.C. Stream Functional Assessment Team 2013). Alterations and/or stressors can contribute to the degradation of a stream, either naturally or anthropogenically, including storm damage, excessive vegetation, beaver impoundment, stream migration, and sedimentation, which can lead to lower stream function. Parameters evaluated with NCSAM protocol include flow restrictions; streambank erosion; buffer size and type; water quality stressors; substrate composition; in-stream habitat; visual and dip netting assessments for aquatic life; presence of wetlands; shade; and others.

SCDNR Stream Quantification Tool Approach

As stated above, six or more streams could be crossed by the access road and Duke Energy proposes to use the SQT field methodology for stream assessments in this area. The SCDNR SQT was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. The SQT can be used to determine the functional condition of a stream, with the SQT Debit Calculator as a means of calculating credits or debits resulting from reach-scale activities typically encountered in the Clean Water Act 404 program.

The SQT requires the assessment of five functional categories: hydrology, hydraulics, geomorphology, physiochemical, and biology (South Carolina Steering Committee 2022). Depending on the anticipated type of impacts or lift, physiochemical and biology categories are optional. Guidance from the SQT suggests physiochemical parameters be measured for stream projects with "goals or objectives related to physiochemical functions or where watershed conditions suggest that uplift is possible." Work would be conducted from upland locations and no in-water work would occur. Best management practices to prevent sedimentation such as silt fencing would be installed to prevent water quality impacts at stream crossings. The future Water Quality Management Plan (developed under the Water Resources Study) will also consider water quality in the areas of the new access road. Given that impacts to water quality are not anticipated and appropriate protection measures will be taken, Duke Energy is not proposing physiochemical monitoring.

At prior meetings with Duke Energy, Aquatic Resources RC members have expressed interest in the biological community of streams in the vicinity of the proposed Bad Creek II Complex. Duke Energy therefore proposes to conduct fish and macroinvertebrate sampling supporting the SQT assessment.

Hydrology, Hydraulics, and Geomorphology

Duke Energy will survey all streams crossed by both access road options using the first three functional categories of the SQT, which comprise hydrology, hydraulics, and geomorphology, using the Rapid Method outlined in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022). Parameters evaluated under these categories include reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Up to 17 metrics will be taken for the parameters evaluated; metrics selection, instruction, and applicability is provided in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022).

Fish Surveys

Fish surveys for use with the SQT are only applicable to perennial streams with drainage areas between 1.5 and 63 square miles (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined by the SQT Data Collection and Analysis Manual, fish surveys will follow Fish Collection Protocols for Streams as described in the SCDNR Fish Sampling Guidance² (SCDNR 2022). For streams in the Blue Ridge ecoregion, sample reaches will be 30 times the average wetted width, or a minimum 100 meters with one electrofishing pass. Surveys will be completed upstream and downstream of the road crossings

² SCDNR Fish Sampling Guidance

three times between July and October 2023. A calibrated multiparameter water quality data sonde will be used to record existing water quality conditions during sampling events, including temperature, dissolved oxygen, conductivity, pH, salinity, and turbidity.

Macroinvertebrate Surveys

Macroinvertebrate surveys under the SQT are limited to perennial streams with a minimum three-square mile drainage area (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined in the SQT Data Collection and Analysis Manual, macroinvertebrate surveys will be completed following the Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling³ (SCDHEC 2017). This method uses a qualitative multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. One survey per stream reach will be conducted during the recommended index period (June 15, 2023 to September 15, 2023 for the Blue Ridge ecoregion). Stream reach lengths will be determined on a site-by-site basis consistent with guidance provided in SCDHEC (2017), which is typically 100 meters of stream. Water quality conditions at the time of sampling will be recorded with a multiparameter data sonde. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Identified taxa and relative abundance will be used to calculate biotic indices to assess stream conditions.

Mussel Surveys

Consistent with the RSP, Duke Energy biologists surveyed upland spoil locations for mussel habitat and determined that no supportive habitat is present for mussel assemblages. SCDNR concurred with this assessment during the July 12, 2023 site visit to two representative spoil locations with streams characteristics of those throughout the Aquatic Resources study area.

Mussel surveys of Limber Pole Creek and Howard Creek will be conducted in late July 2023 following methods adapted from the USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia (USEPA 2013). The survey will include visual and tactile collection of mussels, identification to species, and enumeration. Habitat conditions will be documented, including substrate and water quality, through stream habitat assessments and fish surveys.

Summary of Proposed Field Methods

Field surveys of streams within spoil locations were proposed in the RSP. Since the proposed access road was not planned at the time of the filing of the RSP, the stream crossings were not included in Aquatic Resources Study; however, for completeness, field surveys will also be performed at potential stream crossing locations. The field methods proposed for each stream were developed in consultation with the Aquatic Resources RC and SCDNR. A summary of the proposed field methods is provided in Table 1, with brief descriptions of methods provided in Table 2.

³ SCDHEC Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling

Results and Conclusions

An overview of results of field studies will be discussed in a future meeting to be scheduled for late October or early November 2023. Results and conclusions of the stream habitat assessments and SQT will be summarized in a draft report, which will be provided to the Aquatic Resources RC in November 2023 for comment and in the Initial Study Report (to be filed with FERC by January 4, 2024).

Table 1. Proposed Field Survey Approach for Streams within Potential Spoil Locations and Road Crossings

Potential	Stream		Drainage	Stream Habitat	-	Locations and Road Crossii		
Impact	Name/No.	Flow	Area (sq. mi)	Assessment	Fish Survey	Macroinvertebrate Survey	Mussel Survey ¹	
Potential Spoil Locations								
В	20	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
В	21	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
C	17	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
D	13	Intermittent	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A	
D	14	Perennial	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
G	4	Intermittent	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A	
G	4a	Perennial	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
J	11	Perennial	0.11	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
Potential Access Road Crossings								
1	Limber Pole Creek	Perennial	1.8	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey	
2	UT Howard Creek	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²	
3a/b	Howard Creek	Perennial	4.16	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey	
4	UT Howard Creek	Unknown ²	0.01	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²	
5	UT Devils Fork	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²	
6	Devils Fork (Stream 19)	Perennial	0.09	USEPA RBP, NCSAM, & SCDNR SQT	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	

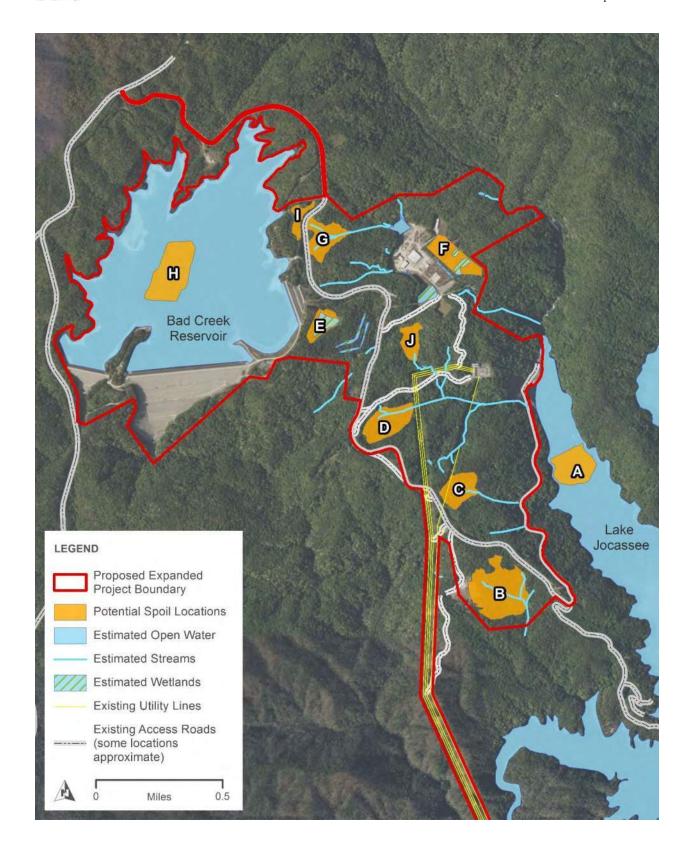
UT: unnamed tributary

¹Mussel surveys will only be completed in waters determined to provide supportive mussel habitat.

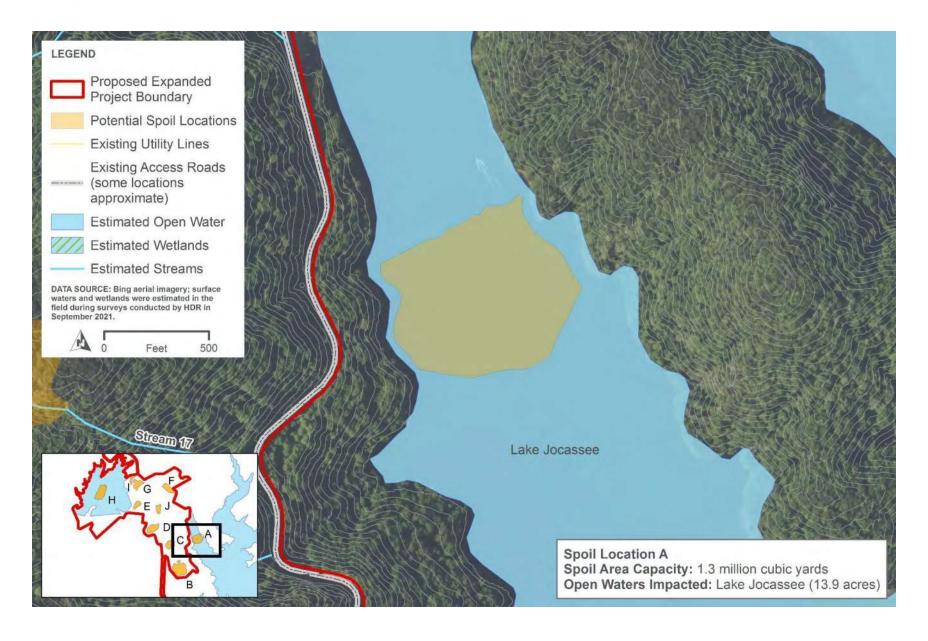
²Aquatic life surveys would only be conducted in intermittent or perennial streams.

Table 2. Descriptions of Field Survey Protocols

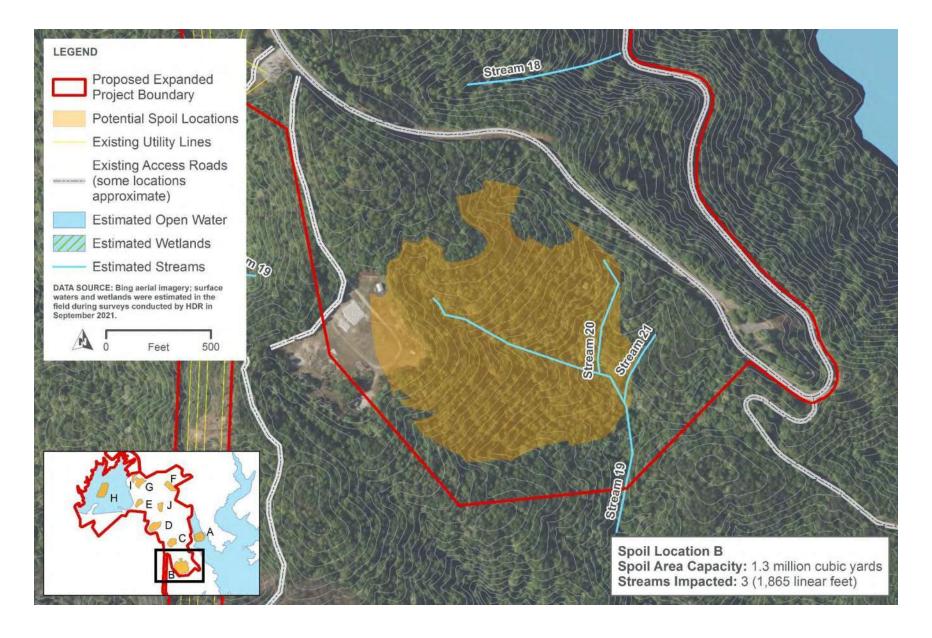
Survey Type	Survey Method	Brief Summary of Methods	
	USEPA Rapid Bioassessment Protocol Stream Assessment	Scored condition parameters including epifaunal substrate/available cover, substrate embeddedness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles or bends, bank stability, vegetative protection, and riparian vegetative zone width.	
Stream Habitat Assessment	NC Stream Assessment Method (NCSAM)	Documentation of in-stream habitat types including aquatic macrophytes and mosses; sticks, leaf packs, or emergent vegetation; snags and logs; undercut banks and root mats; and bedform and substrate types. Observations of stream instability or stressors.	
	SCDNR Stream Quantification Tool (SQT)	Hydrology, hydraulics, and geomorphology will be assessed across seven functional parameters, including reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Metrics will be taken applying the Rapid Method, using tapes and stadia rods.	
	NC Stream Assessment Method (NCSAM)	Visual assessment for fish and semi-aquatic life such as reptiles and amphibians.	
Fish Surveys	SCDNR Stream Quantification Tool (SQT)/ SCDNR Fish Collection Protocols for Streams	Fish surveys completed for the SCDNR SQT will follow the SCDNR Fish Collection Protocols for Streams. For streams in the Blue Ridge Ecoregion, the survey reach will encompass 30 times the average wetted width of the stream or a minimum of 100 meters with one survey pass. Two to three electrofishers, two netters, and one to two buckets will be used. Water quality parameters and photo vouchers will be taken.	
	NC Stream Assessment Method (NCSAM)	Presence/absence survey of macroinvertebrates in all available habitats, including riffles, pools, snags and logs, leaf packs, macrophytes, root mats, hard substrates, and banks. Macroinvertebrates sampled via dipnet with mesh size between 0.5-0.8 mm.	
Macroinvertebrate Surveys	SCDNR Stream Quantification Tool (SQT)/ SCDHEC Standard Operating and Quality Control Procedures	Macroinvertebrate surveys completed for the SCDNR SQT will follow the SCDHEC Standard Operating and Quality Control Procedures. This includes a qualitative, multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. Stream reach lengths are typically 100 meters. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Macroinvertebrate surveys under the SQT are limited to waters with a minimum 3-square-mile drainage area.	
Mussel Surveys	Adapted from USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys	Visual sampling approach to determine mussel presence, richness, and relative density. Mussels collected visually and tactilely (grubbing) during timed searches within well-defined areas.	

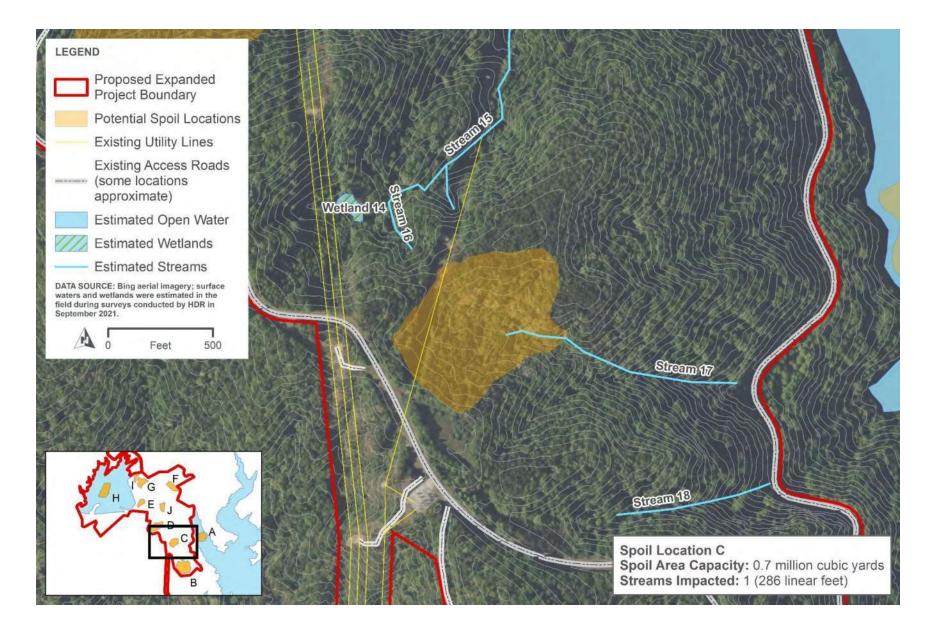

References

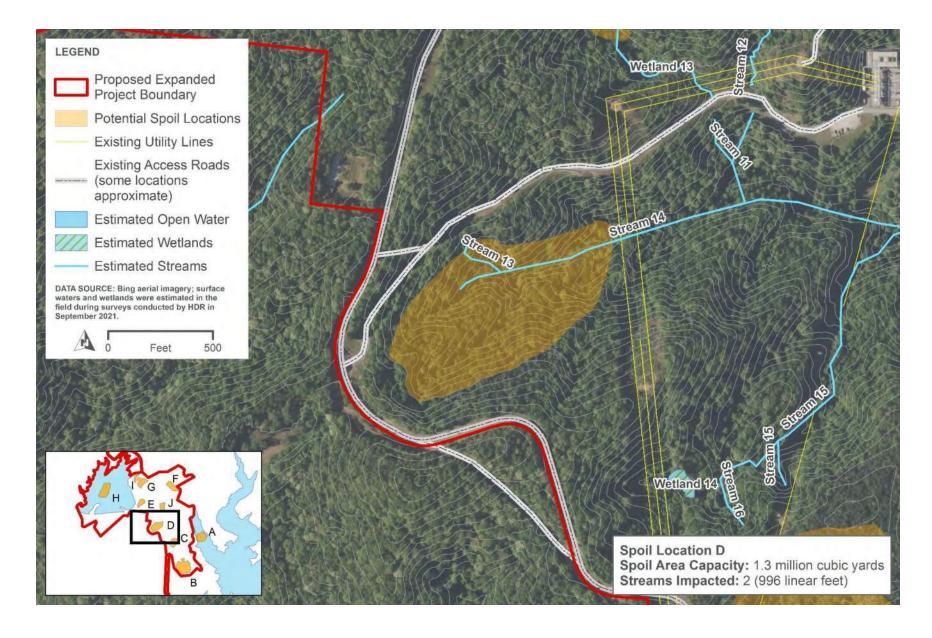
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NC SAM) Draft User Manual. Accessed June 2023. [URL]: https://www.saw.usace.army.mil/Portals/59/docs/regulatory/publicnotices/2013/NCSAM _Draft_User_Manual_130318.pdf
- South Carolina Department of Health and Environmental Control. 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.
- South Carolina Department of Natural Resources. 2022. Fish Sampling Guidance: Fish Collection Protocols for Streams. Accessed July 2023. [URL]: https://www.dnr.sc.gov/environmental/SCDNRSamplingProcedureFishes.pdf.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Environmental Protection Agency (USEPA). 2013. Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia. EPA 800-R-13-003. Office of Water. Washington, DC. Accessed June 2023. [URL]: https://www.epa.gov/sites/default/files/2015-08/documents/tsd_for_conducting_and_reviewing_freshwater_mussel_occurrence_surveys for the development of site-specific wqc for ammonia.pdf.

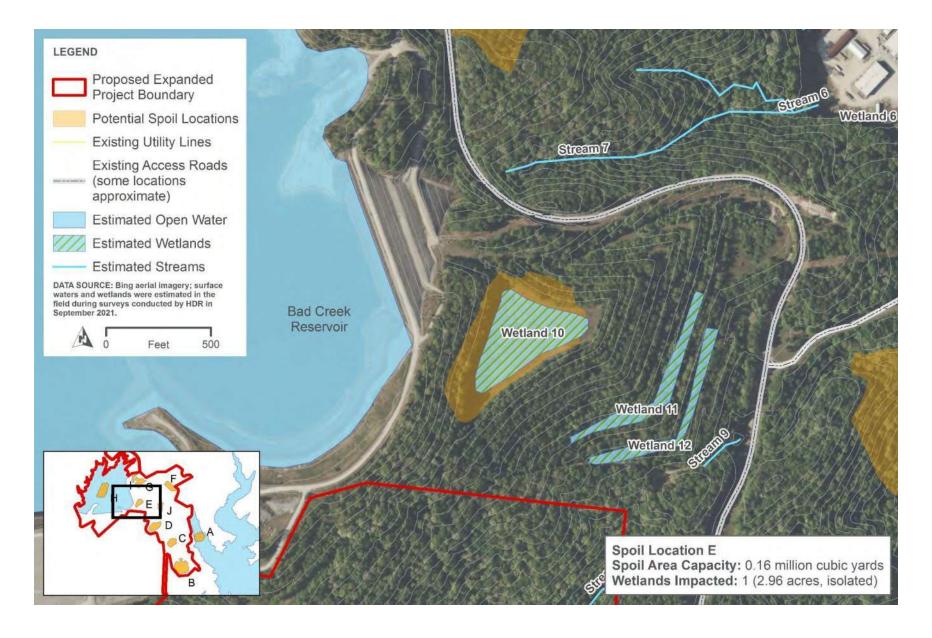

Attachment 1

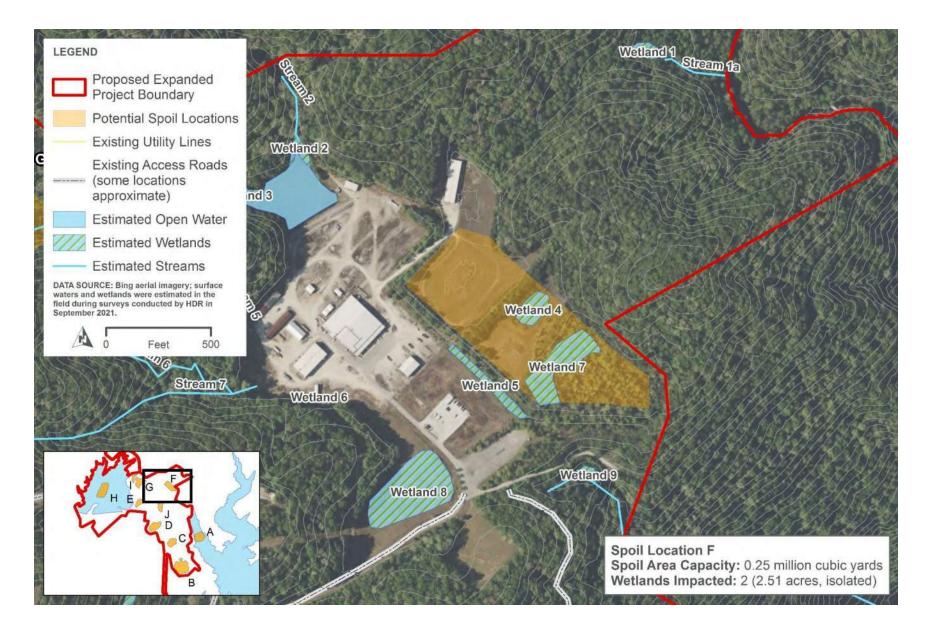
Attachment 1 – Streams and Wetlands within Potential Spoil Locations

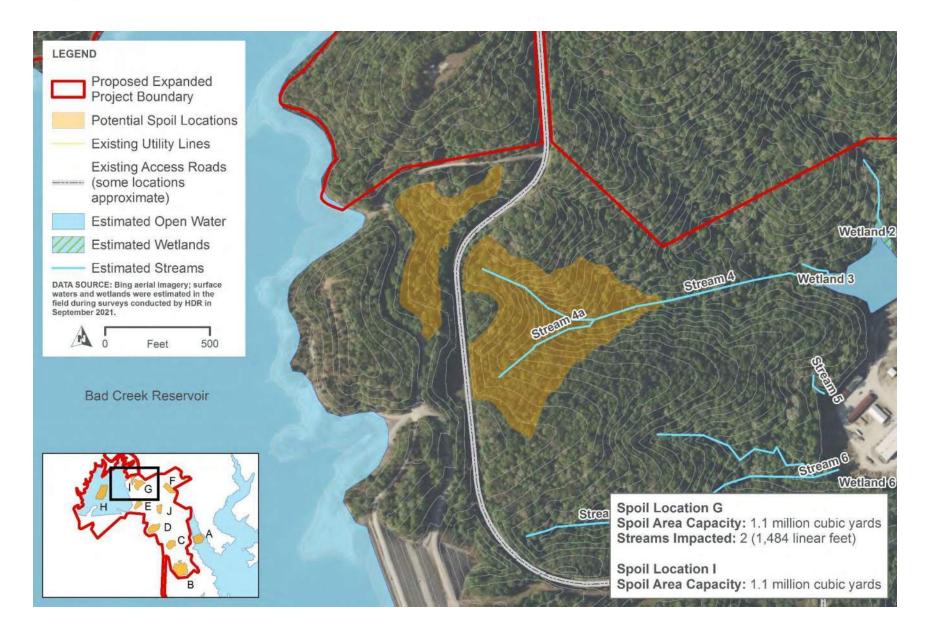


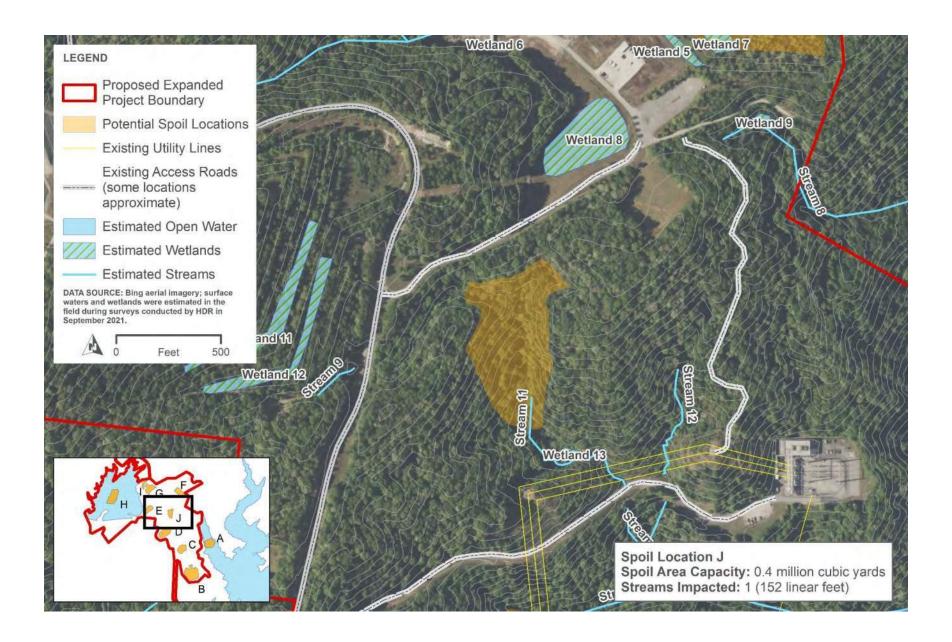


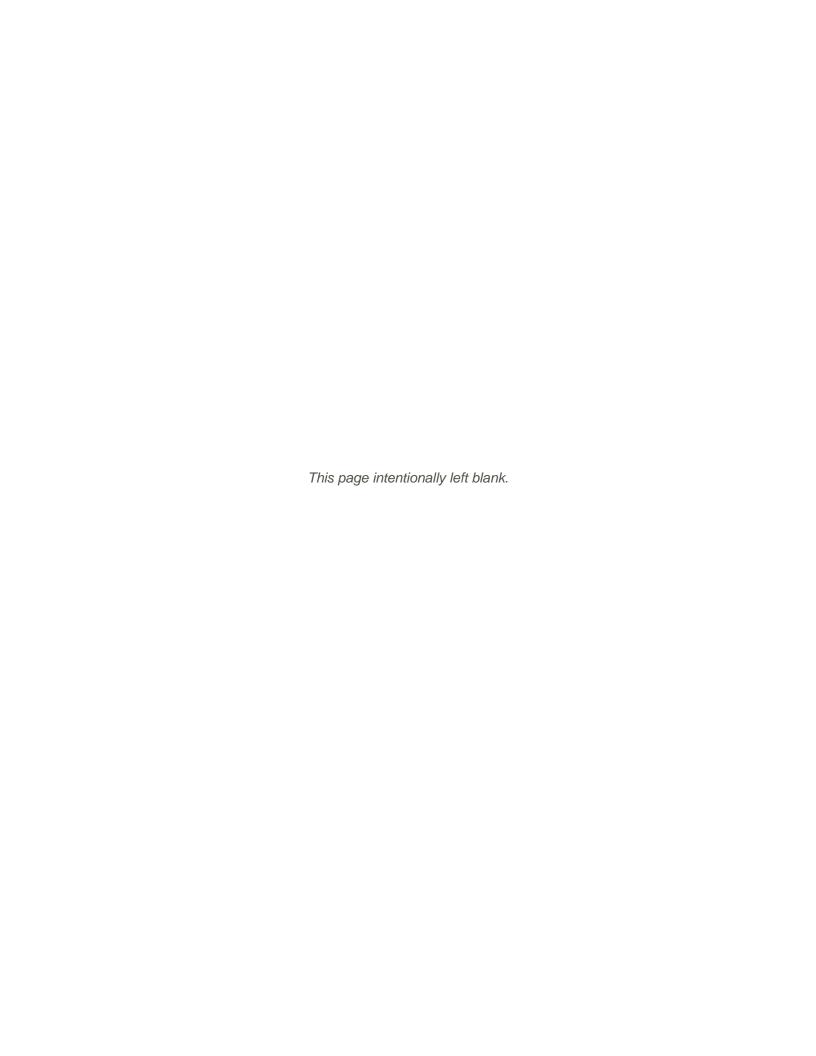


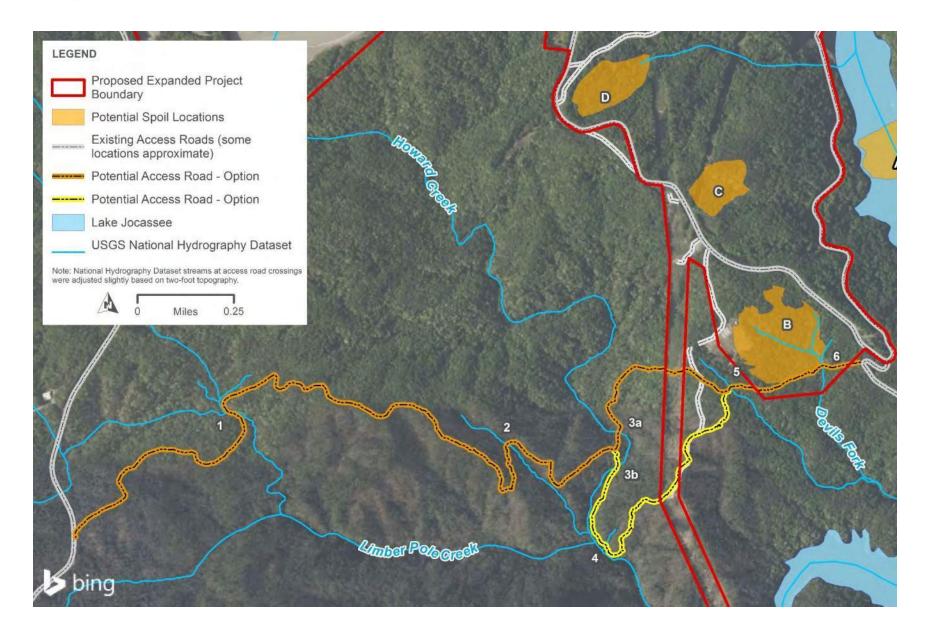


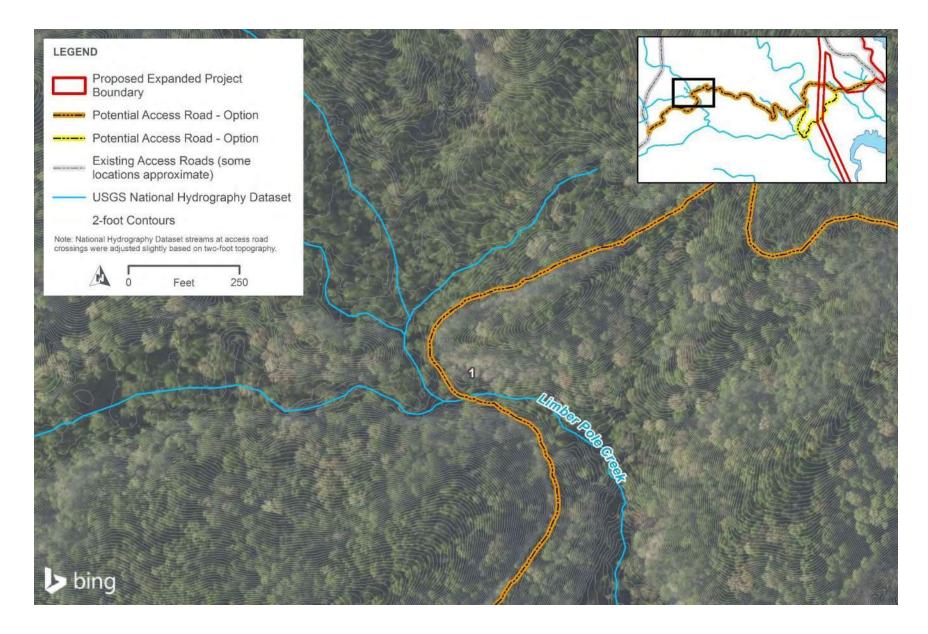




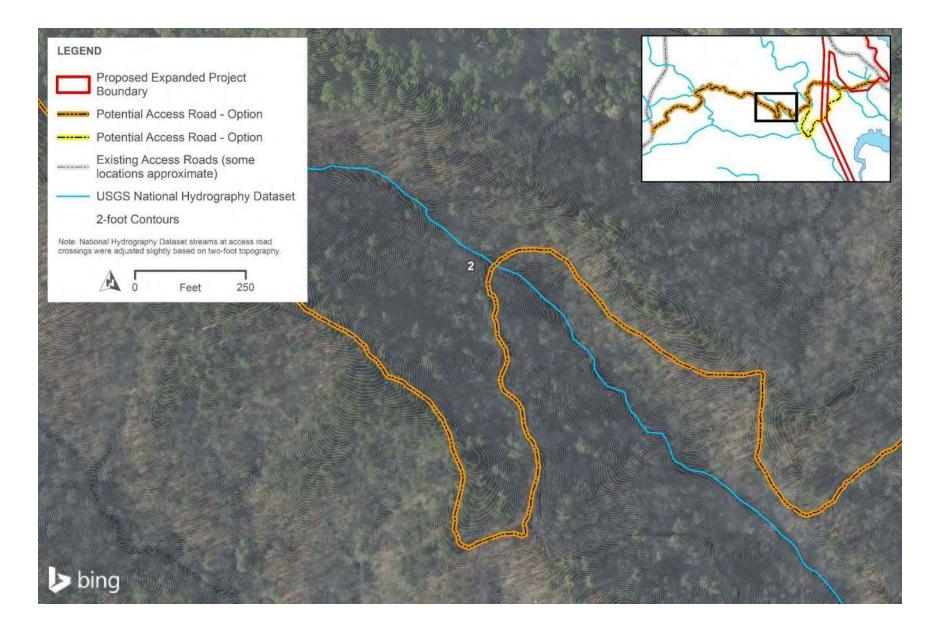


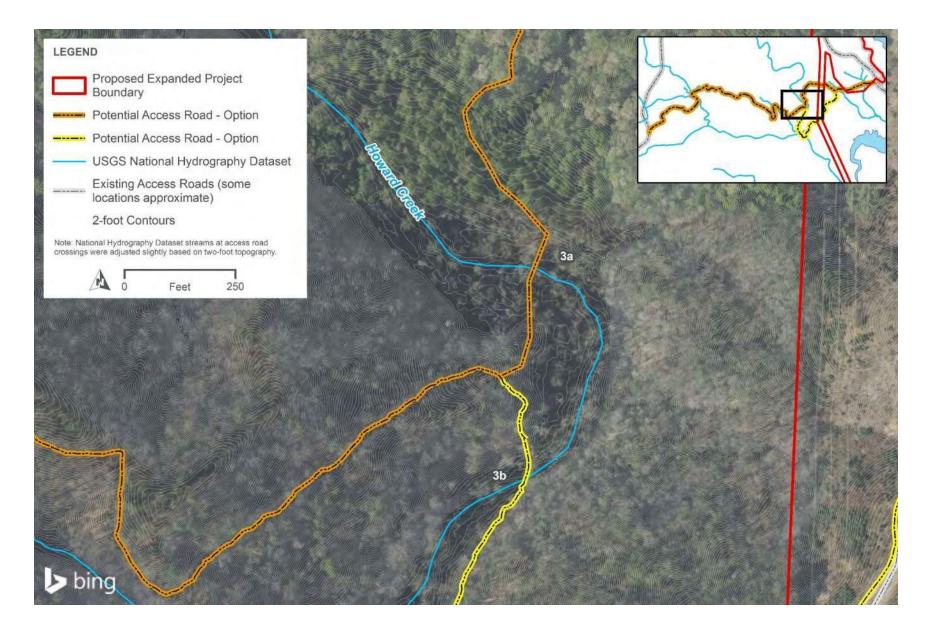


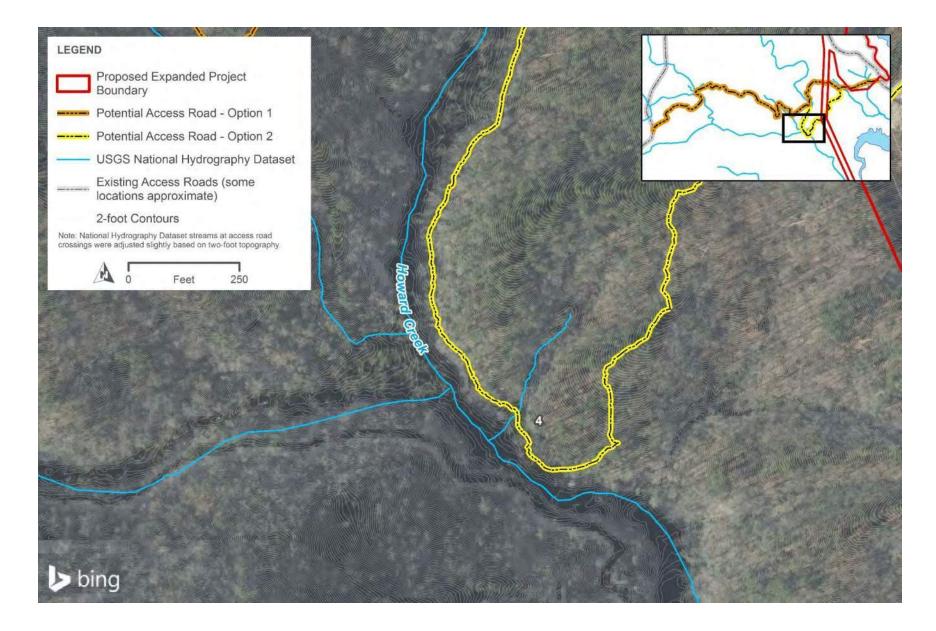


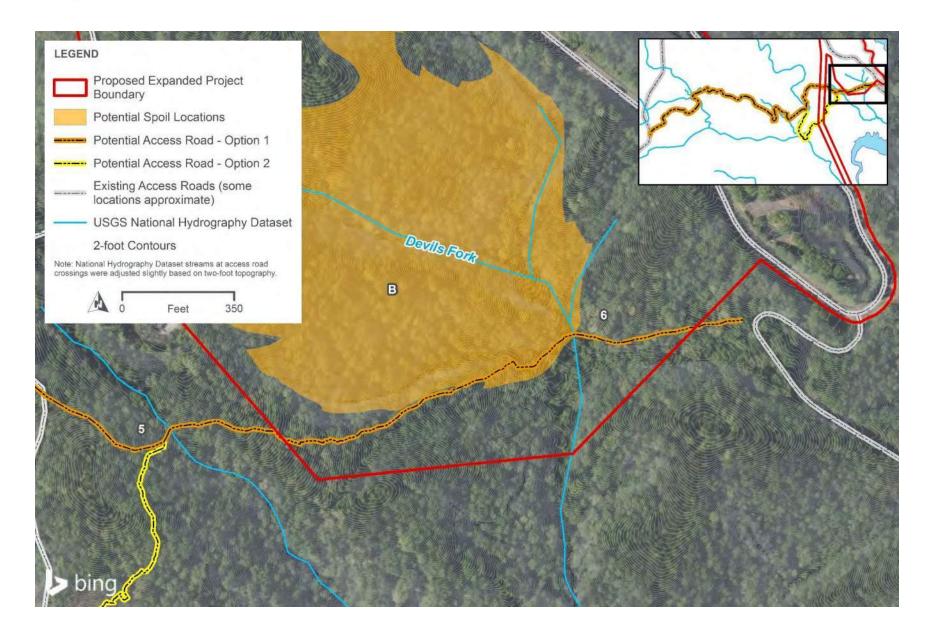

Attachment 2

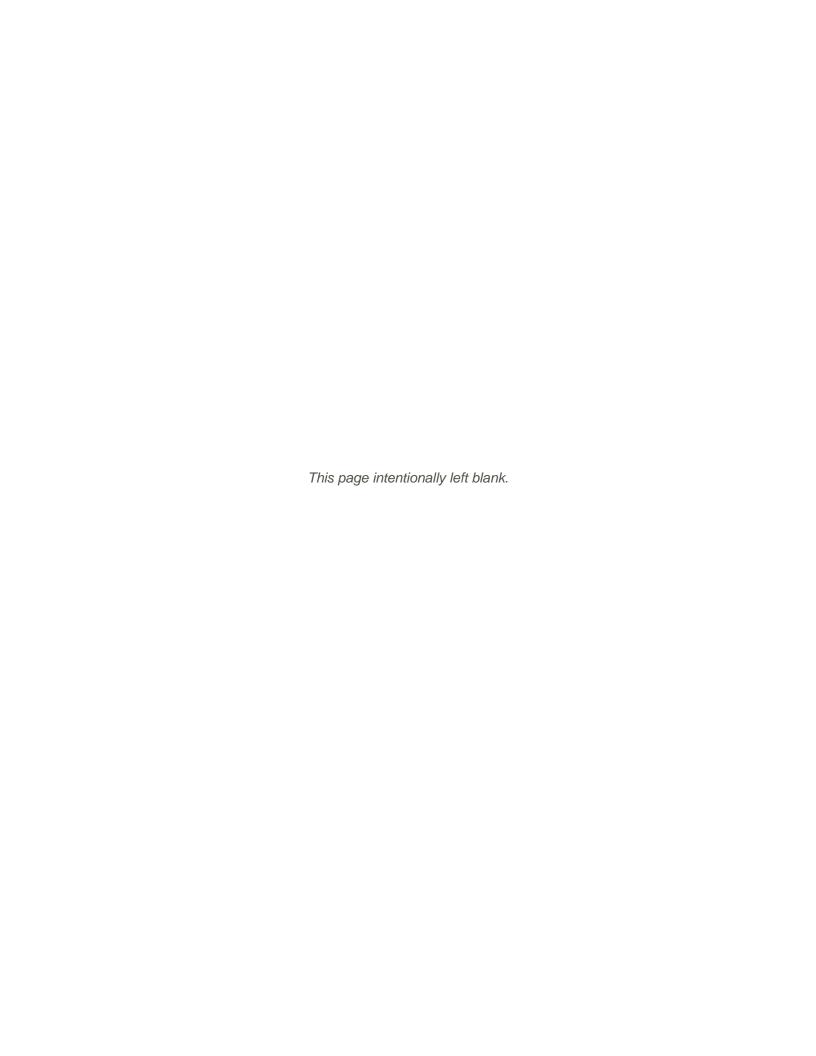
Attachment 2 – Potential Access Road Stream Crossings











Attachment B

Attachment B - Natural Resources Assessment Figures

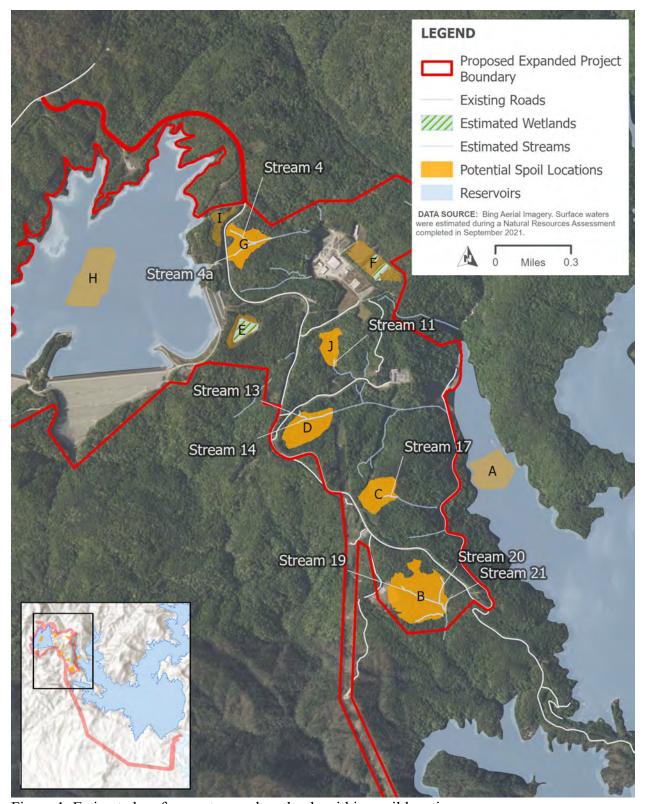


Figure 1. Estimated surface waters and wetlands within spoil locations

Figure 2. Streams and wetlands surveyed along the proposed temporary access road at the Stream 1 (Limber Pole Creek) crossing

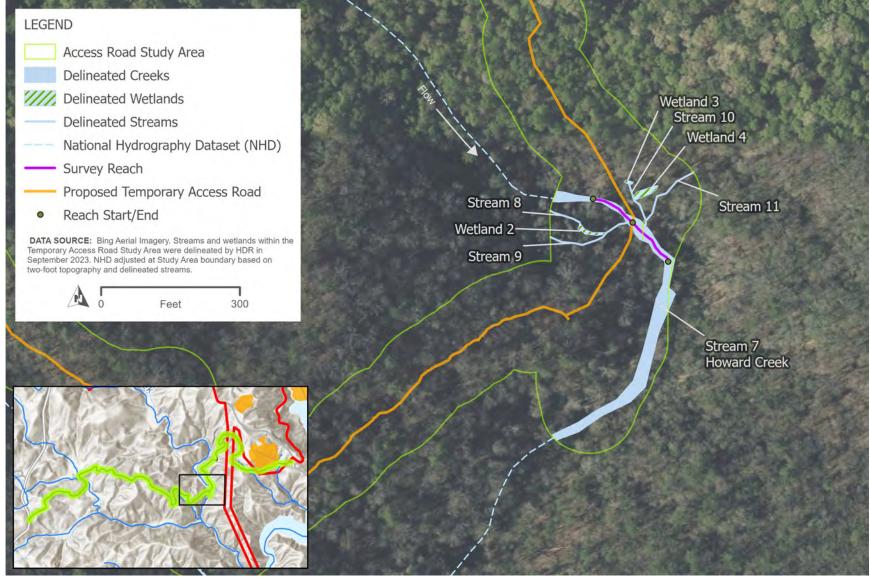


Figure 3. Streams and wetlands surveyed along the proposed temporary access road at the Stream 7 (Howard Creek) crossing

Figure 4. Streams and wetlands surveyed along the proposed temporary access road at the Stream 12 crossing



Figure 5. Streams and wetlands surveyed along the proposed temporary access road at the Stream 15 crossing

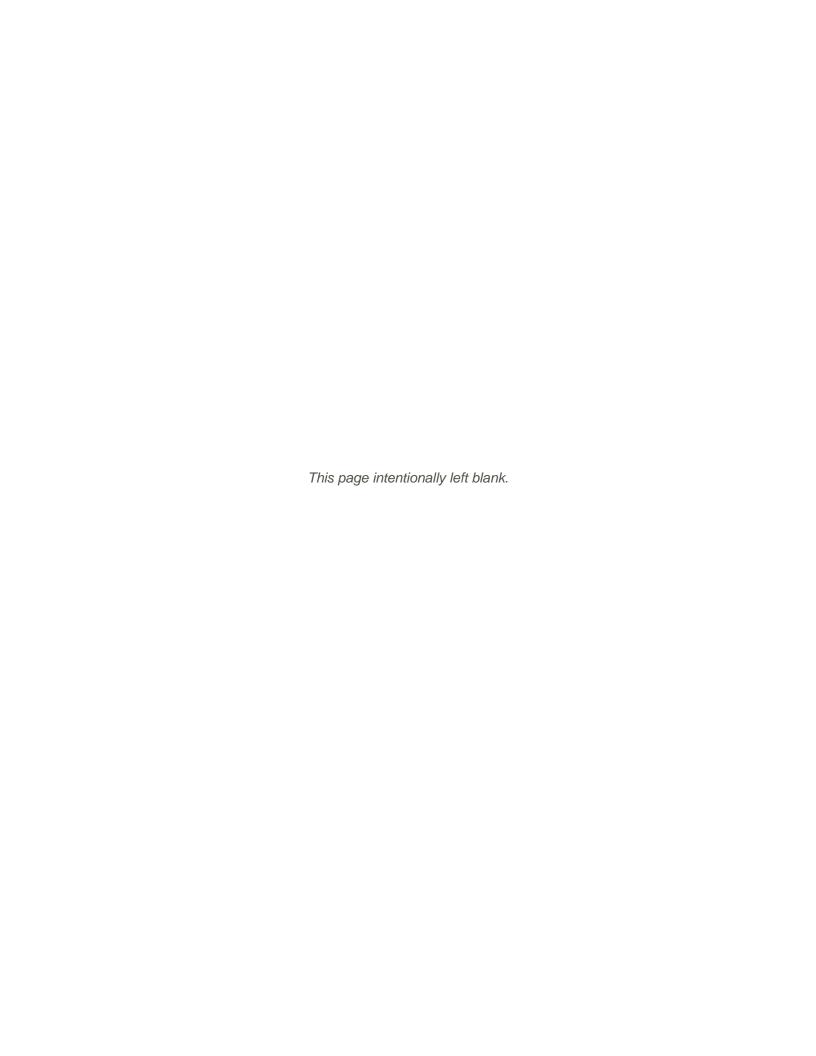



Figure 6. Streams and wetlands surveyed along the proposed temporary access road at the Stream 15 and 17 crossings

Attachment C

Attachment C - U.S.
Environmental Protection
Agency Rapid Bioassessment
Protocol Data Forms

Temporary Access Road

STREAM NAME Stream 1 (Limber Pole)	LOCATION Bad Creek Pumped Storage Project			
STATION # RIVERMILE	STREAM CLASS Perennial			
LAT LONG	RIVER BASIN Savannah			
STORET#	AGENCY			
INVESTIGATORS EBS				
FORM COMPLETED BY	DATE 10/2/2023 REASON FOR SURVEY TIME AM PM			

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	SCORE 18	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	score 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 (4) 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Cond	tion Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
ling reach	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in area of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20) 19 18 17 16	15 14 13 12	1 10 9 8 7 6	5 4 3 2 1 0
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided the width of the stream between 7 to 15.		Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	score 19	20 (19) 18 17 16	15 14 13 12	1 10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas erosion mostly healed over. 5-30% of bank i reach has areas of eros	areas of erosion; high erosion potential during	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 8_(LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters to be	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one cla of plants is not well-represented; disruption evident but not affectir full plant growth poter to any great extent; mothan one-half of the potential plant stubble height remaining.	patches of bare soil or closely cropped vegetation g common; less than one- tial half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE <u>10</u> (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacte zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0

STREAM NAME Stream 7 (Howard Creek)	LOCATION	Oconee County, South Carolina
STATION # RIVERMILE	STREAM CLASS	Perennial
LAT <u>34.990481</u> LONG <u>-83.00247</u>	RIVER BASIN	Savannah
STORET#	AGENCY	
INVESTIGATORS Paul Bright / Brett Boor	ne	
FORM COMPLETED BY Paul Bright	DATE 10/18/23 TIME 9:00	AM PM REASON FOR SURVEY Environmental survey

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and		40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	_{SCORE} 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	_{SCORE} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat				(Condition	Category					
	Parameter	Optimal		Sı	ıboptim	al	N	1argina	ıl		Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.		Some chapresent, upof bridge evidence channelized dredging, past 20 y present, but channelize present.	abutment abutment of past cation, i.e. (greater pay bout recen	n areas nts; e., than e	Channelize extensive or shoring present or and 40 to reach chadisrupted	; emban g structu n both b 80% of nnelized	kments ires anks; stream	Banks sl or cemer the strea channeli disrupted habitat g removed	nt; over m reach zed and d. Instra reatly a	eam Itered or
	SCORE 19	20 19 18 17 1	16	15 14	13	12 11	10 9	8	7 6	5 4	3 2	1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffle divided by width of the stream <7:1 (generally 5 to 7); variety of habitat i key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	es 5 is	Occurren infrequen between the width between	t; distan iffles di of the st	ce vided by	Occasion bottom co some hab between t the width between	ontours itat; dis iffles di of the s	provide tance vided by tream is	shallow	riffles; planting the stance wided by the stre	between y the
samp	SCORE 18	20 19 18 17 1	16	15 14	13	12 11	10 9	8	7 6	5 4	3 2	1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.		Moderate infrequer erosion n over. 5-3 reach has	it, small nostly he 50% of b	areas of aled ank in	Moderate 60% of bareas of e erosion particles.	ank in r rosion;	each has high	Unstable areas; "r frequent sections obvious 60-100% erosiona	aw" are along s and ben bank slo	as traight ds; oughing;
e eva	SCORE 9 (LB)	Left Bank 10 9	9]	8	7	6	5	4	3	2	1	0
to be	SCORE 9 (RB)	Right Bank 10	9	8	7	6	5	4	3	2	1	0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	:	70-90% of streambal covered by vegetation of plants represent evident by full plant to any grothan one-potential height results.	nk surface oy native n, but or is not we ed; disru ut not af growth eat exten half of tl plant stu	e class ell- ption fecting potential t; more ne	50-70% c streambar covered be disruption patches o closely cr common; half of the stubble he	nk surfa by veget n obviou f bare so opped v less that e potent	ation; us; oil or regetation in one- ial plant	Less that streamber covered disruption vegetation vegetation removed 5 centima average	ank surf by vege on of stro on is ver on has b to eters or	aces tation; eambank ry high; een
	SCORE 10 (LB)	Left Bank 10 9		8	7	6	5	4	3	2	1	0
	SCORE 10 (RB)	Right Bank 10 9		8	7	6	5	4	3	2	1	0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts lawns, or crops) have no impacted zone.		Width of 12-18 me activities zone only	ters; hui have im	nan pacted	Width of 12 meters activities zone a gro	; huma have in	n ipacted	meters: 1	ittle or i vegetati	on due to
	SCORE 9 (LB)		9)	8	7	6	5	4	3	2	1	0
	SCORE 9 (RB)	Right Bank 10	9	8	7	6	5	4	3	2	1	0

Temporary Access Road

STREAM NAME Stream 12	LOCATION	Oconee County, South Carolina		
STATION # RIVERMILE	STREAM CLASS Intermit		tent	
LAT <u>34.995451</u> LONG <u>-83.001330</u>	RIVER BASIN	RIVER BASIN Savannah		
STORET #	AGENCY			
INVESTIGATORS Paul Bright / Brett Boone	Э			
FORM COMPLETED BY Paul Bright	DATE 10/18/23 TIME 4:00	AM PM	REASON FOR SURVEY Environmental survey	

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parai	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	_{SCORE} 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	score 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	n Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE <u>8</u> (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Temporary Access Road

STREAM NAME Stream 15	LOCATION	Oconee County, South Carolina		
STATION # RIVERMILE	STREAM CLASS	s Perennial		
LAT <u>34.993024</u> LONG <u>-82.997765</u>	RIVER BASIN	N Savannah		
STORET#	AGENCY			
INVESTIGATORS Paul Bright / Brett Boon	e			
FORM COMPLETED BY Paul Bright	DATE 10/19/23 TIME 10:00	AM PM	REASON FOR SURVEY Environmental survey	

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and		40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ed ir	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Conditi	on Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
Parameters to be evaluated broader than sampling reach	score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion	areas of erosion; high erosion potential during	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potentia to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	score 9 (rb)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

STREAM NAME Stream 16	LOCATION Oconee County, South Carolina	
STATION # RIVERMILE	STREAM CLASS Perennial	
LAT <u>34.993518</u> LONG <u>-82.994454</u>	RIVER BASIN Savannah	
STORET#	AGENCY	
INVESTIGATORS Paul Bright / Brett Boone	e	
FORM COMPLETED BY Paul Bright	DATE 10/19/23 TIME 3:00 AM PM REASON FOR SURVEY Environmental survey	

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	$\frac{9}{3}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
L	$_{\text{SCORE}}$ $\underline{9}_{(RB)}$	Right Bank 10 9	8 7 6	5 4 3	2 1 0

STREAM NAME Stream 17 (Devils Fork)	LOCATION Oconee County, South Carolina		
STATION # RIVERMILE	STREAM CLASS Perennial		
LAT <u>34.993745</u> LONG <u>-82.993409</u>	RIVER BASIN Savannah		
STORET#	AGENCY		
INVESTIGATORS Paul Bright / Brett Boone	•		
FORM COMPLETED BY Paul Bright	DATE <u>10/19/23</u> TIME <u>12:00</u>	AM PM REASON FOR SURVEY Environmental survey	

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ed ir	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
L	$SCORE _{(RB)}$	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score	144
I Utai Scure	

Spoil Location G

STREAM NAME Stream 4a	LOCATION Bad Creek Pumped Storage Project - Spoil Location G		
STATION # RIVERMILE	STREAM CLASS Intermittent		
LAT LONG	RIVER BASIN Savannah		
STORET #	AGENCY		
INVESTIGATORS JK, MI			
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY		

Habitat Condition				Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 12	20 19 18 17 16	15 14 13 (12)11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 10	20 19 18 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).
aram	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 (1)	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 19	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 12	20 19 18 17 16	15 14 13 (12)11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 7(RB)	Right Bank 10 9	8 (7) 6	5 4 3	2 1 0
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank (10) 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0

Total Score 137

A-8

STREAM NAME Stream 4	ped Storage Project - Spoil Location G		
STATION # RIVERMILE	STREAM CLASS Perennial		
LAT LONG	RIVER BASIN Savannah		
STORET #	AGENCY		
INVESTIGATORS JK, MI			
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY		

	Habitat	Condition Category				
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 (8) 7 6	5 4 3 2 1 0	
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 15	20 19 18 17 16	(15)14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
ıram	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	score 9	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	Condition Category								
	Parameter	Optimal	Suboptimal	Marginal	Poor					
ampling reach	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.					
	SCORE 16	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0					
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.					
	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 (3) 2 1 0					
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.					
eva	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
to be	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0					
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.					
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0					
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.					
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0					
L	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0					

Total Score 117

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME Stream 17	LOCATION Bad Creek Pumped Storage Project - Spoil Location C				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT LONG	RIVER BASIN Savannah				
STORET#	AGENCY				
INVESTIGATORS JK, MI					
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY TIME AM PM				

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	score 14	20 19 18 17 16	15 (4) 13 12 11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 9	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	score 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 (12) 11	10 9 8 7 6	5 4 3 2 1 0

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat	l	Condition	ı Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	score 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
	SCORE 12	20 19 18 17 16	15 14 13 (12)11	10 9 8 7 6	5 4 3 2 1 0		
	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
e ev	SCORE 7 (LB)	Left Bank 10 9	8 (7) 6	5 4 3	2 1 0		
to p	SCORE 7(RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0		

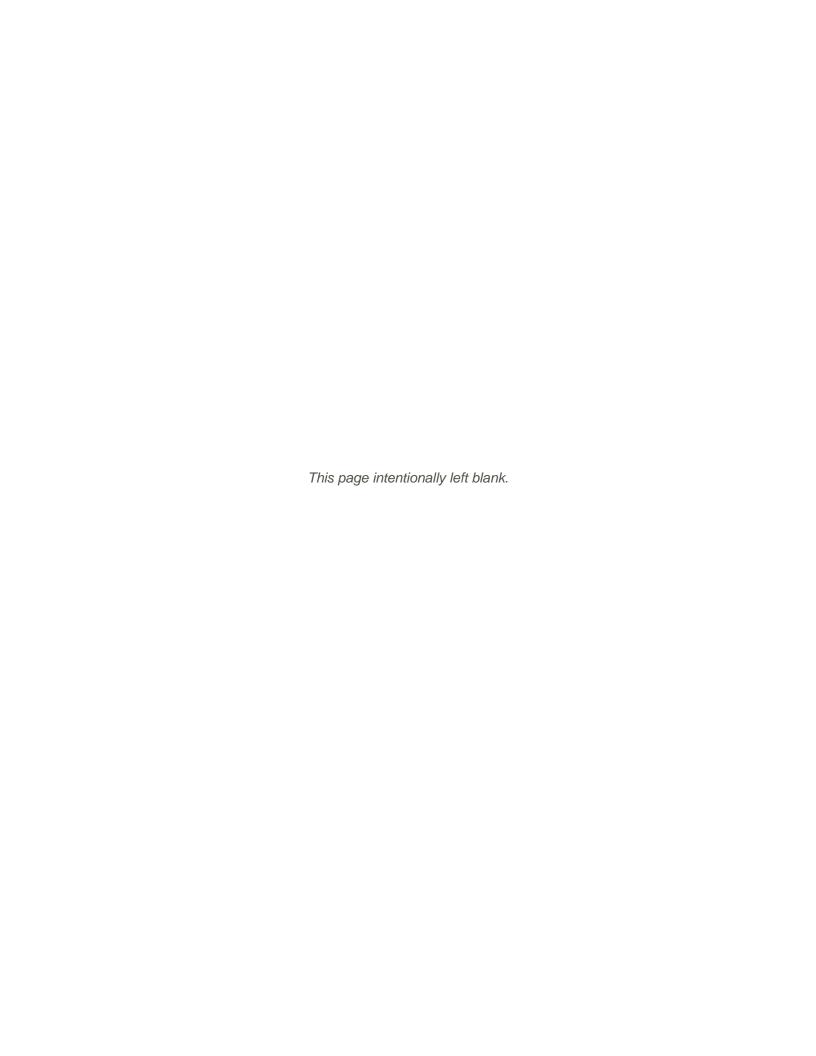
Total Score 143

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME Stream 19 (Devils Fork)	LOCATION Bad Creek Pumped Storage Project - Spoil Location B				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT LONG	RIVER BASIN Savannah				
STORET#	AGENCY				
INVESTIGATORS JK, MI					
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY TIME AM PM				

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. Less than 20% stable habitat; lack of habit obvious; substrate unstable or lacking.		
	score 15	20 19 18 17 16	(15)14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
ıram	SCORE 14	20 19 18 17 16	15 (14)13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)


	Habitat	l	Condition	ı Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	score 20	(20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
g reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	SCORE 17	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 8 (LB)	Left Bank 10 9	(8) 7 6	5 4 3	2 1 0
to b	SCORE 8_(RB)	Right Bank 10 9	(8) 7 6	5 4 3	2 1 0
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 (9)	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	$SCORE \frac{10}{(RB)}$	Right Bank (10) 9	8 7 6	5 4 3	2 1 0

Total Score 155

Attachment D

Attachment D - North Carolina Stream Assessment Method Data Forms

		ACCO	ilipallies Usel i	iailuai veisioi	1 4. 1	
USACE AID #:				NCDWR	#:	
						7.5-minute topographic quadrangle,
						on the same property, identify and
						ser Manual for detailed descriptions
					oplementary measu	urements were performed. See the
	•	es of additional meas		•		
		RS AFFECTING THE	ASSESSMENT	AREA (do not	need to be within	the assessment area).
	INFORMATION:					
1. Project name	· · · · · · · · · · · · · · · · · · ·	d Creek Pumped Sto		2. Date of eval		
3. Applicant/owi	ner name: <u>Du</u>	ke Energy			me/organization:	JK, MI (HDR)
5. County:			-		ned water body	
7. River basin:		vannah			.5-minute quad:	Whitewater River
	,	ees, at lower end of a		·	578, -83.0064250	
		and width can be a			amont roach avalu	atad (fact): 100
	show on attached	· · · · — — — — — — — — — — — — — — — —		engin of asses. 1.5	sment reach evalus	
		fle, if present) to top of				nable to assess channel depth.
	Ith at top of bank (feet): <u> 5 </u>			ch a swamp steam	! Lifes Lino
	GORY INFORMA			Jucaiii		
15. NC SAM Zo		Mountains (M)	☐ Piedmont (P) Inner	Coastal Plain (I)	☐ Outer Coastal Plain (O)
13. NO SAW 20	iic.	M Modifications (M)			Coastal Flail (I)	Utter Coastal Flair (O)
				,		
16. Estimated g		\square A \frown		•	⊠B	
valley shape Tidal Marsh		(more sinuous stream	n flatter valley sk	ne)	(less sinuous str	ream, steeper valley slope)
	,		=		•	, , ,
17. Watershed	size: (skip arsh Stream)	\boxtimes Size 1 (< 0.1 mi ²)	☐Size 2 (0.1 t	o < 0.5 mi²)	☐Size 3 (0.5 to <	5 mi²)
ADDITIONAL II	•					
_		s evaluated? ☐Yes	⊠No If Yes ch	eck all that ann	alv to the assessme	ent area
Section 1		Classified Tr			-	shed (I III IV V)
_	Fish Habitat	☐Primary Nurs				s/Outstanding Resource Waters
	wned property	•	arian buffer rule i		utrient Sensitive W	
☐Anadrom		☐303(d) List				onmental Concern (AEC)
_		federal and/or state I	isted protected sp			
List spec	ies:					
_	ed Critical Habitat	· · · —				
19. Are addition	al stream informat	ion/supplementary m	easurements inc	uded in "Notes	/Sketch" section or	attached? ☐Yes ⊠No
	_					
		t reach metric (skip	for Size 1 stream	ms and Tidal N	Marsh Streams)	
	ater throughout ass flow, water in poo					
	water in assessm					
		ı – assessment reac				()
□A At	least 10% of asse	essment reach in-stre	am nabitat or rift	ie-pooi sequen	ce is severely affective nonded water or	cted by a flow restriction or fill to the impoundment on flood or ebb within
the	assessment reac	h (examples: unders	ized or perched o	culverts, cause	wavs that constrict	the channel, tidal gates, debris jams,
	aver dams).	ii (oxampioo: anaoio	nzou or poronou (divorto, caaco	wayo mac conomic	and chamiler, trading acces, destrict jame,
⊠B No	,					
3. Feature Pat	tern – assessmer	nt reach metric				
			tered nattern (ex	amnles: straigh	tening modification	n above or below culvert).
	t A	cooment reach has a	tered pattern (ex	ampies. straign	terning, modification	rabove of below ediverty.
			4! .			
	-	- assessment reach		raama muafila (a)	ramanlaar ahannal s	danna anttiam aniatiam danamiam anana
						down-cutting, existing damming, over has not reformed from any of these
	turbances).	radation, diedyllig, a	iiiu excavalioii W	пете арргорна	to Granner prome	nas not reformed from any or these
	t A					
			4-1-			
		assessment reach n		ho otroom bee	ourrently recess	rad Evamples of instability include
						red. Examples of instability include uch as concrete, gabion, rip-rap).
	0% of channel un		aa oarj, aonvo wi	asimiy, and an	our narderling (st	201. 30 0011010to, gabiori, rip-rapj.
	to 25% of channel					
	5% of channel un					

ь.				Bank (LB)								
	LB	RB		` '	•	Ū	, ,					
	⊠a □B	⊠A □B	Moo refe	derate evid erence inter	lence of c raction (ex	onditions amples:	limited strea	bern mside	ns, leve e area a	es, down ccess, di	teraction -cutting, aggradation, dredging) that adver sruption of flood flows through streamside a ninor ditching [including mosquito ditching])	area, leaky
	□c	□c	[exa of fl mos	amples: ca lood flows t	iuseways hrough sti ning]) <u>or</u> fl	with flood reamside	lplain and ch area] <u>or</u> too	annel much	l constri	ction, bul ain/interti	teraction (little to no floodplain/intertidal zo kheads, retaining walls, fill, stream incision, dal zone access [examples: impoundments or assessment reach is a man-made feat	disruption , intensive
7.				ors – asse	ssment r	each/inte	ertidal zone	metri	ic			
	Chec A B C	Exce	olored w <u>ssive</u> se	dimentatio	n (burying	of strear	m features o	r inter	rtidal zo	ne)	ter discoloration, oil sheen, stream foam) and causing a water quality problem	
	□D □E	Odor	(not incent public	luding natu	ıral sulfide	odors)					e assessment reach. Cite source in "Note	es/Sketch"
	□F □G □H □I	Exce Degra	ssive alç aded ma	h access to gae in strea arsh vegeta	am or inte	rtidal zon e intertida	e al zone (remo				nowing, destruction, etc)	
	∏ا	Othe Little	to no st	ressors		(explair	n in "Notes/S	Ketch	section	11)		
8.		Drought conditions and rainfall exceeding 1 inch within the last 48 hours										
9.	Larg □Ye		•	Stream – a stream is to				? If \	∕es, skiţ	o to Metri	c 13 (Streamside Area Ground Surface Co	ndition).
10.		ral In-stre	eam Hal ⊠No	Degrade sedimer	ed in-strea ntation, m	am habita ining, exc	cavation, in-	strea	m harde	ening [for	ent reach (examples of stressors include r example, rip-rap], recent dredging, and to Metric 12)	
	10b.	□A	Multiple (include	e aquatic m e liverworts	nacrophytes, lichens,	es and ac and alga	quatic mosse I mats)		Fidal	□F □G	Size 4 Coastal Plain streams) 5% oysters or other natural hard bottoms Submerged aquatic vegetation	s
		⊠B	vegeta	tion	•		d/or emerge	nt	ck for sh Stre	□H	Low-tide refugia (pools) Sand bottom	
		⊠c ⊠D	5% und in bank		ks and/or o the norm	root mat	p trees) s and/or roo d perimeter	ts	Che Mars	∐J □K	5% vertical bank along the marsh Little or no habitat	
		□E	Little O	i iio nabilai	L							
****	*****	******	******	**REMAIN	ING QUE	STIONS	ARE NOT A	PPLI	CABLE	FOR TIE	OAL MARSH STREAMS***************	*****
11.	Bedf	orm and	Substra	ate – asses	ssment re	ach met	ric (skip for	Size	4 Coas	tal Plain	streams and Tidal Marsh Streams)	
		□Yes	⊠No					ed str	ream? (skip for (Coastal Plain streams)	
	11b.	Bedform ⊠A ⊠B □C	Riffle-ri Pool-gl	ed. Check un section lide section I bedform a	(evaluate (evaluate	11c) e 11d)	box(es). tric 12, Aqua	atic L	_ife)			
	11c.	at least (R) = pre	ections, one box esent bu	check all the cin each rought 10%, C	nat occur b ow (skip f Common (pelow the for Size 4 C) = > 10	normal wett 1 Coastal Pl and	ed pe	rimeter treams	and Tida	sessment reach – whether or not submerge Il Marsh Streams). Not Present (NP) = ab Predominant (P) = > 70%. Cumulative pe	sent, Rare
		NP	R ⊠	ed 100% fo C	r each ass	sessment P	Bedrock/sa			,		
						H	Boulder (2 Cobble (64	4 – 25	6 mm)	m)		
		H				H	Gravel (2 - Sand (.062	2 – 2	mm)			
							Silt/clay (< Detritus Artificial (ri		-	ate etc \		
	11d.	∐Yes	⊠No	Are pools	ப் filled with	ப் sedimer	•			,	streams and Tidal Marsh Streams)	

-		sessment reach metric (skip for Tidal Marsh Streams)					
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:					
12b. ⊠	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.					
1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles					
Ħ		Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)					
		Beetles Caddisfly larvae (T)					
		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)					
Ħ		Damselfly and dragonfly larvae					
블		Dipterans Mayfly larvae (E)					
H		Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae					
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)					
\vdash		Mussels/Clams (not <i>Corbicula</i>) Other fish					
\boxtimes		Salamanders/tadpoles Snails					
Ē		Stonefly larvae (P) Tipulid larvae					
		Worms/leeches					
Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runof					
\boxtimes A	\boxtimes A	Little or no alteration to water storage capacity over a majority of the streamside area					
□C □R	□C □R	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)					
		Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.					
□a □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep					
Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach					
LB '	RB						
⊠n	⊠N	Are wetlands present in the streamside area?					
		outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)					
Check a ☐A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)					
□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir					
\Box D	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)					
∐⊑ ⊠F		ped or bank soil reduced (dig through deposited sediment if present) the above					
		tors – assessment area metric (skip for Tidal Marsh Streams)					
\square A	Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)						
		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)					
		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge					
□F		the above					
_		sment reach metric (skip for Tidal Marsh Streams)					
\boxtimes A	Stream	shading is appropriate for stream category (may include gaps associated with natural processes)					
∐B □C		d (example: scattered trees) shading is gone or largely absent					
	12a. If N 12b. If N 12b. If N 12c. If N	12a. Yes If No, select 12b. Yes					

19.	9. Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.								
	Vegetated Wooded LB RB LB RB ☑A ☑A<								
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).								
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation								
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet								
	LB RB LB RB LB RB A A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)								
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).								
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground								
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.								
	LB RB □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.								
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB								
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. 								
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or								
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.								
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.								
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230								
Note	rs/Sketch:								

Stream Site Name	Project	Date of Assessment	9/12/2023	
Stream Category	Mb1	Assessor Name/Organization	JK, MI (HDR)	
Notes of Field Asses Presence of regulate Additional stream inf NC SAM feature type	rements included (Y/N) ⁄/arsh Stream)	NO NO NO Intermittent		

(perennial, intermittent, Tidal Marsh Stream)	Intermitter	<u></u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	LOW	LOW
(2) Flood Flow	HIGH	HIGH
(3) Streamside Area Attenuation	HIGH	HIGH
(4) Floodplain Access	HIGH	HIGH
(4) Wooded Riparian Buffer	HIGH	HIGH
(4) Microtopography	NA	NA
(3) Stream Stability	HIGH	HIGH
(4) Channel Stability	HIGH	HIGH
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	HIGH	HIGH
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	LOW	LOW
(2) Streamside Area Vegetation	HIGH	HIGH
(3) Upland Pollutant Filtration	HIGH	HIGH
(3) Thermoregulation	HIGH	HIGH
(2) Indicators of Stressors	NO	NO
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	LOW	LOW
(3) Baseflow	LOW	LOW
(3) Substrate	LOW	LOW
(3) Stream Stability	HIGH	HIGH
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	HIGH	HIGH
(3) Stream-side Habitat	HIGH	HIGH
(3) Thermoregulation	HIGH	HIGH
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA NA	NA NA
(4) Tidal Marsh Channel Stability	NA NA	NA
(4) Tidal Marsh Stream Geomorphology	NA NA	NA
(3) Tidal Marsh In-stream Habitat	NA NA	NA
(2) Intertidal Zone	NA NA	NA
(2) IIILEI IIUAI ZOITE		

	7 to companies con inc	andan 10101011 211	
USACE AID #:		NCDWR #:	
INSTRUCTIONS: Attach a s	sketch of the assessment area and photograp	ohs. Attach a copy of the USGS 7	7.5-minute topographic quadrangle,
and circle the location of the	stream reach under evaluation. If multiple s	stream reaches will be evaluated	on the same property, identify and
number all reaches on the at	tached map, and include a separate form for	each reach. See the NC SAM Us	ser Manual for detailed descriptions
and explanations of requeste	ed information. Record in the "Notes/Sketch"	" section if supplementary measu	rements were performed. See the
NC SAM User Manual for ex	amples of additional measurements that may	/ be relevant.	
NOTE EVIDENCE OF STRE	SSORS AFFECTING THE ASSESSMENT A	AREA (do not need to be within	the assessment area).
PROJECT/SITE INFORMAT	ION:		
1. Project name (if any):		2. Date of evaluation: 9/12/202	23
3. Applicant/owner name:		. Assessor name/organization:	JK / HDR
5. County:		6. Nearest named water body	
7. River basin:	Savannah	on USGS 7.5-minute quad:	Lake Jocassee
	degrees, at lower end of assessment reach):	•	Edite occasion
,	,	00.0140010, -00.0000200	
STREAM INFORMATION.	depth and width can be approximations) Stream 4a - spoil		
9. Site number (show on atta	•	ength of assessment reach evalua	ated (feet): 100
			nable to assess channel depth.
12. Channel width at top of b		sessment reach a swamp steam	
			! Lifes Lino
	ial flow ☐Intermittent flow ☐Tidal Marsh St	ueam	
STREAM CATEGORY INFO			
15. NC SAM Zone:		☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
16. Estimated geomorphic	¬. \	Ma	
valley shape (skip for	\Box A	⊠B	
Tidal Marsh Stream):	(more sinuous stream, flatter valley slop	oe) (less sinuous stre	eam, steeper valley slope)
17. Watershed size: (skip	Size 1 (< 0.1 mi²) ☐Size 2 (0.1 to	< 0.5 mi ²) Size 3 (0.5 to <	5 mi²)
for Tidal Marsh Stream	· · · · · · · · · · · · · · · · · · ·		
ADDITIONAL INFORMATIO	,		
	rations evaluated? □Yes ⊠No If Yes, che	ck all that apply to the assessme	nt area.
Section 10 water	☐Classified Trout Waters		shed (I II III IV V)
☐Essential Fish Habitat			Outstanding Resource Waters
□ Publicly owned proper			•
☐Anadromous fish	□303(d) List		onmental Concern (AEC)
Documented presence	e of a federal and/or state listed protected spe		
List species:	·		
☐Designated Critical Ha	abitat (list species)		
=	ormation/supplementary measurements inclu	ided in "Notes/Sketch" section or	attached? ☐Yes ⊠No
1. Channel Water - assess	sment reach metric (skip for Size 1 stream	s and Tidal Marsh Streams)	
	out assessment reach.		
□B No flow, water i	n pools only.		
□C No water in ass	essment reach.		
2. Evidence of Flow Restri	iction – assessment reach metric		
	f assessment reach in-stream habitat or riffle	e-pool sequence is severely affect	ted by a flow restriction or fill to the
	ting flow <u>or</u> a channel choked with aquatic n		
	t reach (examples: undersized or perched cu		
beaver dams).		-	-
☐B Not A			
3. Feature Pattern – asses	sment reach metric		
	e assessment reach has altered pattern (exa	mnles: straightening modification	above or below culvert)
☐B Not A	3 docooment reach has altered pattern (exa	mpies. straightering, meanisation	above of bolow daivorty.
	rofile – assessment reach metric		
	essment reach has a substantially altered stre		
	e aggradation, dredging, and excavation wh	ere appropriate channel profile l	has not reformed from any of these
disturbances). □R Not ∧			
☐B Not A			
5. Signs of Active Instability	ity – assessment reach metric		
	instability, not past events from which the		
	channel down-cutting (head-cut), active wide	ening, and artificial hardening (su	ch as concrete, gabion, rip-rap).
⊠A < 10% of chann			
☐B 10 to 25% of ch			
□C > 25% of chann	iei unstable		

6.		reamside Area Interaction – streamside area metric onsider for the Left Bank (LB) and the Right Bank (RB).									
	LB	siaer for th RB	ie Left Bal	ik (LD) and the	Right Bal	IIK (KD).					
	□A ⊠B	∐A ⊠B	Modera referen	ce interaction (ex	onditions amples: I	(examples: be limited streamsi	rms, levee de area ac	s, down- ccess, dis	cutting, aggradation, c	redging) that adversely aff rrough streamside area, lea mosquito ditching)	
	□c	□c	Extensi [examp of flood mosqui	ive evidence of coles: causeways voles: through str	onditions with flood eamside	that adversely plain and chann area] <u>or</u> too mud	affect refe el constric ch floodpla	rence into tion, bulk in/intertic	eraction (little to no flo heads, retaining walls, al zone access [exam	odplain/intertidal zone acce fill, stream incision, disrupt oles: impoundments, intens is a man-made feature on	ion ive
7.		•		– assessment re	each/inte	rtidal zone me	tric				
	Chec	Excess Notice Odor (ored water sive sedim able evide not includi	entation (burying nce of pollutant on ng natural sulfide	of strean lischarges odors)	n features or int s entering the a	ertidal zon ssessmen	ie) t reach <u>ai</u>	er discoloration, oil she		ob"
		section Livesto	n. ock with ac	ccess to stream o	r intertida	ıl zone	water quar	ity iii tile	assessment reach.	Site source iii Notes/Sketi	۱ اد
	∐H □	Degrad Other:	ded marsh	vegetation in the	e intertidal				owing, destruction, et	()	
8.	Rece	Size 1 or 2 s Droug Droug	streams, D ht conditio	ns <u>and</u> no rainfall ns <u>and</u> rainfall ex	er is cons l or rainfal	idered a drough Il not exceeding	nt; for Size 1 inch wit	hin the la	eams, D2 drought or h st 48 hours	igher is considered a droug	∣ht.
9.	Larg □Ye			eam – assessme am is too large or			Yes, skip	to Metric	13 (Streamside Area	Ground Surface Condition)	
10.		ral In-strea ⊠Yes	□No □ s		am habita ining, exc	at over majority cavation, in-stre	am harde	ning [for	example, rip-rap], red	stressors include excess cent dredging, and snaggi	
	10b.	⊠A I	Multiple aq (include liv Multiple sti vegetation Multiple sn 5% underc	quatic macrophyte erworts, lichens, icks and/or leaf p ags and logs (inc cut banks and/or xtend to the norm	es and aq and algal backs and cluding lap root mats	mats) d/or emergent trees) and/or roots	Check for Tidal as Marsh Streams the Only	kip for S F G H I J K	ize 4 Coastal Plain st 5% oysters or other Submerged aquatic Low-tide refugia (pod Sand bottom 5% vertical bank alo Little or no habitat	natural hard bottoms regetation bls)	
****	*****	*******	**************************************	EMAINING QUE	STIONS A	ARE NOT APPI	LICABLE	FOR TID	AL MARSH STREAM	3******	
11.	Bedf	orm and S	ubstrate -	- assessment re	ach metr	ric (skip for Siz	e 4 Coast	al Plain	streams and Tidal Ma	rsh Streams)	
	11a.	□Yes	⊠No Is	assessment read	:h in a nat	tural sand-bed s	stream? (s	kip for C	oastal Plain streams)	
	11b.	⊠A I ⊠B I	Riffle-run s Pool-glide	Check the apprection (evaluate section (evaluate dform absent (sk	11c) ∋ 11d)	, ,	Life)				
	11c.	at least or (R) = pressions should not NP I	ne box in sent but ≤ t exceed 1 R C C C C C C C C C C C C C C C C C C	each row (skip f 10%, Common (0 00% for each ass A A D	for Size 4 C) = > 10	Coastal Plain -40%, Abundan	streams a t (A) = > 2 blite - 4096 mn 256 mm) 1 mm) 2 mm) 1062 mm)	nd Tidal เ0-70%, F	Marsh Streams). No	ner or not submerged. Che t Present (NP) = absent, Ra 0%. Cumulative percentag	are
	11d.	 ∐Yes			sedimen	` '	•	,	streams and Tidal Ma	rsh Streams)	

12.	Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)						
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:				
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tha apply. If No, skip to Metric 13.				
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles				
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)				
	片		Beetles Caddisfly larvae (T)				
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)				
	Ħ		Damselfly and dragonfly larvae				
	ᆸ		Dipterans Mayfly larvae (E)				
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae				
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)				
	\exists		Mussels/Clams (not <i>Corbicula</i>) Other fish				
	R		Salamanders/tadpoles Snails				
	Ħ	\boxtimes	Stonefly larvae (P)				
			Tipulid larvae Worms/leeches				
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff				
	\square A	\square A	Little or no alteration to water storage capacity over a majority of the streamside area				
	⊠B □C	⊠B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)				
14.		r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.				
	□a □B ⊠C	□a ⊠b □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep				
15.	Conside wetted pe	r for the erimeter	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach. 				
	LB □Y	RB □Y	Are wetlands present in the streamside area?				
	⊠N	⊠N	·				
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach.				
	\square A	Streams	and/or springs (jurisdictional discharges)				
	□B □C	Obstruc	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)				
	□D □E		e of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present)				
	⊠F	None of	the above				
17.	Baseflov Check a		tors – assessment area metric (skip for Tidal Marsh Streams)				
	□A ⊠B	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)				
	□C	Urban s	ream (≥ 24% impervious surface for watershed)				
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge				
	□F	None of	the above				
18.	_		sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.				
	⊠A □B	Stream	shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees)				
	□C		shading is gone or largely absent				

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □A □A □A □A □A □A □A □A □ ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B From 50 to < 100 feet wide □C □C □C □C □C From 30 to < 50 feet wide □D □D □D □D □D □ From 10 to < 30 feet wide
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB A A Mature forest B B Non-mature woody vegetation or modified vegetation structure C C Herbaceous vegetation with or without a strip of trees < 10 feet wide D Maintained shrubs
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A A Medium to high stem density B B B Low stem density C C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB □ A The total length of buffer breaks is < 25 percent. □ B □ B The total length of buffer breaks is between 25 and 50 percent. □ C □ C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB ☑A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B □B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. □C □C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. ☐ Yes ☐ No Was conductivity measurement recorded? If No, select one of the following reasons. ☐ No Water ☐ Other: 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). ☐ A < 46 ☐ B 46 to < 67 ☐ C 67 to < 79 ☐ D 79 to < 230 ☐ E ≥ 230
Note	es/Sketch:

Stream 4a

Stream Site Name	Project	Date of Assessment	9/12/2023	
Stream Category	Mb1	Assessor Name/Organization	JK / HDR	
Notes of Field Asses	NO			
Presence of regulator	NO NO			
Additional stream inf	NO			
	Perennial			
INC SAINI leature type	e (perennial, intermittent, Tidal N	viaisii Sueaiii)	refermal	

(1		<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	LOW	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	LOW	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	LOW	
(3) Substrate	HIGH	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA NA	
Overall	MEDIUM	

	Accompanies see manaar voolen zi.	
USACE AID #:	NCDWR #:	
	sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic qu	
	stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, id	
	tached map, and include a separate form for each reach. See the NC SAM User Manual for detailed de	
	ed information. Record in the "Notes/Sketch" section if supplementary measurements were performed amples of additional measurements that may be relevant.	. See the
	ESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).	
PROJECT/SITE INFORMATI	·	
Project name (if any):	Bad Creek Pumped Storage Project 2. Date of evaluation: 9/12/2023	
3. Applicant/owner name:	Duke Energy 4. Assessor name/organization: JK, MI (HDR)	
5. County:	6. Nearest named water body	
7. River basin:	Savannah on USGS 7.5-minute quad: Howard Creek	
,	degrees, at lower end of assessment reach): 34.9999817, -82.9961129	
	depth and width can be approximations)	
9. Site number (show on attact	ached map): Stream 17 spoil C 10. Length of assessment reach evaluated (feet): 100 (in riffle, if present) to top of bank (feet): 3 Unable to assess channel of	donth
12. Channel width at top of ba		лериі.
	ial flow Intermittent flow Tidal Marsh Stream	
STREAM CATEGORY INFO		
15. NC SAM Zone:	☐ Mountains (M) ☐ Piedmont (P) ☐ Inner Coastal Plain (I) ☐ Outer Coastal Plain	(O)
		,
16. Estimated geomorphic		
valley shape (skip for	□A ⊠B	
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope	;)
17. Watershed size: (skip	Size 1 (< 0.1 mi ²)	ni²)
for Tidal Marsh Stream) ADDITIONAL INFORMATION		
	rations evaluated? ☐Yes ☒No If Yes, check all that apply to the assessment area.	
Section 10 water	☐ Classified Trout Waters ☐ Water Supply Watershed (☐ I ☐ II ☐ III ☐ II	IV 🗆V)
☐Essential Fish Habitat	,,,,	
☐Publicly owned propert		
☐Anadromous fish	□ 303(d) List □ CAMA Area of Environmental Concern (AEC)	
	e of a federal and/or state listed protected species within the assessment area.	
List species: ☐Designated Critical Hab	phitat (list spacies)	
	ormation/supplementary measurements included in "Notes/Sketch" section or attached? ☐Yes ☒No	
	sment reach metric (skip for Size 1 streams and Tidal Marsh Streams)	
☐C No water in asse		
	iction – assessment reach metric	
	f assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction (or fill to the
	ting flow <u>or</u> a channel choked with aquatic macrophytes <u>or</u> ponded water <u>or</u> impoundment on flood or	ebb within
the assessment	t reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, d	
beaver dams). ⊠B Not A		
3. Feature Pattern – assess		
□ A	e assessment reach has altered pattern (examples: straightening, modification above or below culvert).	
	rofile – assessment reach metric	
	essment reach has a substantially altered stream profile (examples: channel down-cutting, existing dan e aggradation, dredging, and excavation where appropriate channel profile has not reformed from a	
disturbances).	e aggradation, diedging, and excavation where appropriate channel profile has not reformed from al	ly of these
⊠B Not A		
5. Signs of Active Instabilit	ity – assessment reach metric	
_	instability, not past events from which the stream has currently recovered. Examples of instab	ility include
active bank failure, active	e channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, r	
⊠A < 10% of channe		
☐B 10 to 25% of change☐C > 25% of change		
	IOI GIIOIGNIO	

0.				action – sti Bank (LB) a									
	LB	RB	no Lone I	Junik (LD) c	ind the rei	giit Dui	III (III).						
	⊠a □B	⊠A ∏B	Mod refer	ence intera	nce of con ction (exar	nditions mples: I	(examples limited stre	: berr amsid	ms, leve le area a	es, dowr access, d	n-cutting, aggradation,	dredging) that adversely a through streamside area, le	
	□c	□c	Exte [exa of flo mos	nsive evide mples: cau ood flows thi	nce of conseways with rough streaming]) or floor	nditions th floodp amside a	that advers plain and cl area] <u>or</u> too	sely a hanne much	ffect ref el constri n floodpl	erence in ction, bul ain/intert	nteraction (little to no f lkheads, retaining wall idal zone access [exal	g mosquito ditaling]) loodplain/intertidal zone acc s, fill, stream incision, disrup mples: impoundments, inten n is a man-made feature or	otion sive
7.	Wate	r Quality	Stresso	rs – assess	sment rea	ch/inte	rtidal zone	metr	ric				
		k all that		tor in atroop	m or interti	idal zan	o (millar wh	sita bl	مرس سام	otural wa	tor discolaration, all a	haan atraam faam)	
	∐A □B			dimentation							ter discoloration, oil s	ieen, siream loam)	
				idence of pouding natura			s entering t	he as	sessme	nt reach a	<u>and</u> causing a water q	uality problem	
	ΠE						ting degrad	ded w	ater qua	ality in th	e assessment reach.	Cite source in "Notes/Ske	tch"
	□F	sectio Livest		access to	stream or i	ntertida	ıl zone						
	□G	Exces	ssive alg	ae in strean	n or intertio	dal zone	Э				and the second	1.)	
	□H □I			rsn vegetati							mowing, destruction, e	HC)	
	\boxtimes J	Little 1	to no stre	essors									
8.		Size 1 or 2 Droug Droug	streams, ght condi ght condi		t or higher o rainfall o	is consi r rainfal	idered a dr Il not excee	ought eding 1	; for Size	ithin the I	treams, D2 drought or last 48 hours	higher is considered a drou	ıght.
9.	Larg e			tream – as ream is too				s? If`	Yes, ski	p to Metri	ic 13 (Streamside Are	a Ground Surface Conditior	۱).
10.				itat Types ·									
	10a.	∐Yes	⊠No	sedimenta	ation, mini	ng, exc	cavation, in	-strea	ım hard	ening [fo		of stressors include exces ecent dredging, and snagg	
	10b.										Size 4 Coastal Plain		
		_	(include	aquatic ma liverworts,	lichens, ar	nd algal	mats)		Check for Tidal Marsh Streams Only	□F □G	Submerged aquati		
			Multiple vegetati	sticks and/ on	or leaf pad	cks and	i/or emerge	ent	k for . Only	□H □I	Low-tide refugia (p Sand bottom	ools)	
		⊠c	Multiple	snags and				oto	Chec	□k □J	5% vertical bank a	ong the marsh	
				ercut banks extend to t				JIS			Little or no habitat		
		□E	Little or	no habitat									
****	*****	*****	*****	*REMAININ	IG QUEST	IONS A	ARE NOT /	APPLI	CABLE	FOR TIE	DAL MARSH STREA	MS*********	,
11.	Bedf	orm and S	Substrat	e – assess	ment reac	ch metr	ic (skip fo	r Size	4 Coas	tal Plain	streams and Tidal N	Marsh Streams)	
	11a.	□Yes	⊠No	ls assessm	ent reach	in a nat	tural sand-l	oed st	ream? (skip for	Coastal Plain stream	ıs)	
	11b.			d. Check t			ox(es).						
				n section (e de section (
		_		bedform ab	` •				•				
	11c.	at least of (R) = pres	ne box sent but	in each rov ≤ 10%, Co	v (skip for mmon (C)	r Size 4 = > 10-	Coastal P -40%, Abu	lain s	treams	and Tida	al Marsh Streams). N	ether or not submerged. Ch lot Present (NP) = absent, F 70%. Cumulative percenta	Rare
			nt exceed R	d 100% for 6	eacn asses A F	ssment	reacn.						
		\boxtimes				╡	Bedrock/s Boulder (2			m)			
				Ħ		₫	Cobble (6	64 – 2	56 mm)	''' <i>)</i>			
			H			\dashv	Gravel (2 Sand (.06						
				Ħ		ቯ	Silt/clay (
		\boxtimes	\square	\exists		Ⅎ	Detritus Artificial (rip-rap	o, concr	ete, etc.)			
	11d.	∐Yes	⊠No	Are pools f	illed with s	edimen	t? (skip fo	r Size	4 Coas	tal Plain	streams and Tidal M	Marsh Streams)	

12.	Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams)						
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:				
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tha apply. If No, skip to Metric 13.				
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles				
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)				
			Beetles Caddisfly larvae (T)				
	R		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)				
	Ħ		Damselfly and dragonfly larvae				
	블		Dipterans Mayfly larvae (E)				
	H		Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae				
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)				
	\vdash		Mussels/Clams (not <i>Corbicula</i>) Other fish				
	R		Salamanders/tadpoles Snails				
	Ē		Stonefly larvae (P) Tipulid larvae				
			Worms/leeches				
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff				
	\boxtimes A	⊠A	Little or no alteration to water storage capacity over a majority of the streamside area				
	□B □C	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)				
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.				
	□A □B ⊠C	□a □b ⊠c	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep				
15.	Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach.				
		RB					
	⊠n	∐Y ⊠N	Are wetlands present in the streamside area?				
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)				
	\square A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)				
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)				
	□D □E	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)				
	⊠F		ped or bank soil reduced (dig through deposited sediment if present) the above				
17.			ors – assessment area metric (skip for Tidal Marsh Streams)				
	Check a □A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)				
	□B □C		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)				
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge				
	⊠F		the above				
18.	_		sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.				
	\boxtimes A	Stream	shading is appropriate for stream category (may include gaps associated with natural processes)				
	□B □C		d (example: scattered trees) shading is gone or largely absent				

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.							
	Vegetated Wooded LB RB LB RB ☑A ☑A<							
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).							
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation							
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet							
	LB RB LB RB LB RB A A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)							
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).							
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground							
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.							
	LB RB □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.							
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB							
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. 							
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or							
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.							
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.							
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230							
Note	rs/Sketch:							

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	9/12/2023	
Stream Category	Mb1	Assessor Name/Organization	JK, MI (HDR)	
Notes of Field Asses	NO			
Presence of regulato		NO		
Additional stream inf	NO			
NC SAM feature type	Perennial			

e (perennial, intermittent, Tidal Marsh Stream)	Perennia	<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA NA	
•	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

		ACC	ompanies Oser wi	anuai version z. i	
USACE A				NCDWR #:	
					7.5-minute topographic quadrangle,
			•		d on the same property, identify and
and explar	nations of requested	d information. Record in	the "Notes/Sketch	" section if supplementary meas	ser Manual for detailed descriptions urements were performed. See the
		mples of additional meas		y be relevant. AREA (do not need to be withi i	n the assessment area).
PROJECT	SITE INFORMATION	ON:		·	
-	name (if any):	Bad Creek Pumped Sto		2. Date of evaluation: 9/12/20	
	nt/owner name:	Duke Energy		Assessor name/organization:	JK, MI
County:River ba		Cayannah		6. Nearest named water body	Haward Crask
		Savannah		on USGS 7.5-minute quad:	Howard Creek
	•	egrees, at lower end of a	•	34.9945859, -82.9951158	
9. Site num	nber (show on attac		ork 10. Le	ength of assessment reach evalu	
		n riffle, if present) to top			Jnable to assess channel depth.
	el width at top of ba			ssessment reach a swamp steam	n? ∐Yes ∐No
		I flow Intermittent flow	v ∐Tidal Marsh S	tream	
_			□ D:		
15. NC SA	M Zone:	⊠ Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
	ted geomorphic		$\overline{}$	⊠в	
	shape (skip for //arsh Stream):	(more sinuous strear	n flatter valley slov	ne) (less sinuous st	ream, steeper valley slope)
	,	·			• • • •
	shed size: (skip al Marsh Stream)	⊠Size 1 (< 0.1 mi²)	☐Size 2 (0.1 to	$< 0.5 \text{ mi}^2$) Size 3 (0.5 to <	5 mi²)
	AL INFORMATION	J.			
_			MNo If Ves che	eck all that apply to the assessme	ant area
	tion 10 water	Classified Ti			rshed (I I II III IV V)
	ential Fish Habitat	☐Primary Nur			s/Outstanding Resource Waters
	licly owned property		parian buffer rule in		
	dromous fish	303(d) List			ronmental Concern (AEC)
_			listed protected sp	ecies within the assessment area	
List	species:				
	ignated Critical Hab				
19. Are add	ditional stream info	mation/supplementary m	neasurements inclu	ıded in "Notes/Sketch" section o	rattached?
1. Chann	el Water – assessi	ment reach metric (skin	for Size 1 stream	ns and Tidal Marsh Streams)	
⊠A		t assessment reach.	7101 0120 1 0110411	io una Tradi maron otrodino,	
⊟в	No flow, water in	pools only.			
□C	No water in asse	ssment reach.			
2. Eviden	ce of Flow Restric	tion – assessment read	ch metric		
□A				e-pool sequence is severely affe	cted by a flow restriction or fill to the
	point of obstructi	ng flow <u>or</u> a channel cho	oked with aquatic r	nacrophytes <u>or</u> ponded water <u>or</u>	impoundment on flood or ebb within
		reach (examples: unders	sized or perched co	ulverts, causeways that constrict	the channel, tidal gates, debris jams,
⊠n	beaver dams).				
⊠в	Not A				
		ment reach metric			
□A	• •	assessment reach has a	ltered pattern (exa	mples: straightening, modificatio	n above or below culvert).
⊠B	Not A				
4. Feature	e Longitudinal Pro	file – assessment reac	h metric		
□A	_			eam profile (examples: channel	down-cutting, existing damming, over
		aggradation, dredging, a	and excavation wh	nere appropriate channel profile	has not reformed from any of these
-	disturbances).				
⊠B	Not A				
		y – assessment reach r			
Consid	ler only current in	stability, not past ever	nts from which th		ered. Examples of instability include
			ead-cut), active wid	ening, and artificial hardening (s	uch as concrete, gabion, rip-rap).
⊠A	< 10% of channe				
□B □C	10 to 25% of cha > 25% of channe				
	- 20 /0 UI UIIAIIIIE	i unotable			

ь.				Bank (LB								
	LB	RB	ille Leit	Dalik (LD	, and the	Kigiit Da	iik (IXD).					
	⊠a □B	⊠A □B	Mo refe	derate evid erence inte	dence of c raction (ex	onditions amples:	limited strea	berm mside	s, leve	es, down ccess, di	teraction -cutting, aggradation, dredging) tha sruption of flood flows through strea inor ditching [including mosquito di	mside area, leaky
	□c	□c	[ex of f mo	amples: ca lood flows t	auseways through str hing]) <u>or</u> fl	with flood reamside	lplain and ch area] <u>or</u> too	annel much	constric	ction, bull ain/interti	teraction (little to no floodplain/inter kheads, retaining walls, fill, stream in dal zone access [examples: impoun or assessment reach is a man-ma	ncision, disruption dments, intensive
7.	Wate	er Quality	Stress	ors – asse	ssment re	each/inte	ertidal zone	metri	С			
	Chec A B C	Exce	olored w ssive se	dimentatio	n (burying	of strear	m features oi	r intert	idal zor	ne)	er discoloration, oil sheen, stream t	•
		Odor	not incent incent	luding natu	iral sulfide	odors)	_				e assessment reach. Cite source	
	□F □G □H	Lives Exce	tock wit	h access to gae in strea arsh vegeta	am or inte	rtidal zon	е	oval, b	urning,	regular r	nowing, destruction, etc)	
	∏I ⊠J	Othe Little	r: to no st	ressors		(explain	n in "Notes/S	ketch"	section	1)		
8.	Rece For S □A □B	Size 1 or 2 Drou Drou	streams ght cond ght cond	s, D1 droug ditions <u>and</u> ditions <u>and</u>	ght or high no rainfall	er is cons I or rainfa	al Marsh Str sidered a dro all not exceed 1 inch within	ught; t	for Size inch wi	thin the la	reams, D2 drought or higher is cons ast 48 hours	sidered a drought.
9.	⊠C Larg e	e or <u>D</u> anç	gerous	onditions Stream – a stream is to				? If Y	es, skip	to Metri	c 13 (Streamside Area Ground Surf	ace Condition).
10.	Natu	ral In-stre			_	_	each metric				·	•
	10a.	∐Yes	⊠No	sedimer	ntation, mi	ining, ex	cavation, in-	strean	n harde	ning [for	nt reach (examples of stressors i example, rip-rap], recent dredgin to Metric 12)	
	10b.	Check a ☐A	Multiple		nacrophyte	es and a	quatic mosse			kip for S	Size 4 Coastal Plain streams) 5% oysters or other natural hard Submerged aquatic vegetation	bottoms
		□В		e sticks an			d/or emerge	nt į	k for II h Strea Only	∐H □	Low-tide refugia (pools) Sand bottom	
		⊠c ⊠d	Multiple	e snags an			p trees) s and/or root	to (Check for Tidal Marsh Streams Only	∐', ∐'j	5% vertical bank along the marsh	ı
		□E	in bank		o the norm		d perimeter	ıs	ļ		Little or no habitat	
****	*****	*****	******	**REMAIN	ING QUE	STIONS	ARE NOT A	PPLIC	ABLE	FOR TID	OAL MARSH STREAMS*********	******
11.	Bedf	orm and	Substra	ate – asses	ssment re	ach met	ric (skip for	Size 4	4 Coas	tal Plain	streams and Tidal Marsh Stream	s)
		□Yes	⊠No					ed stre	eam? (s	kip for (Coastal Plain streams)	
	11b.	Bedform ⊠A ⊠B □C	Riffle-r Pool-gl	ed. Check un section lide section I bedform a	(evaluate (evaluate	11c) e 11d)	box(es). tric 12, Aqua	atic Li	ife)			
	11c.	at least	ections,	check all tl	hat occur b ow (skip f	oelow the	normal wett	ed per ain str	rimeter or reams a	and Tida	sessment reach – whether or not su I Marsh Streams). Not Present (N Predominant (P) = > 70%. Cumula	P) = absent, Rare
				ed 100% fo C				,	,	•	()	, ,
							Bedrock/sa Boulder (2			n)		
				\boxtimes			Cobble (64 Gravel (2 -	l – 256	6 mm)	,		
							Sand (.062 Silt/clay (<	2 – 2 n	nm)			
				\boxtimes			Detritus Artificial (ri		•	te, etc.)		
	11d.	_ ∐Yes	⊠No	Are pools	s filled with	n sedimer	,			,	streams and Tidal Marsh Stream	s)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b.	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
	\exists		Beetles Caddisfly larvae (T)
	\Box		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ä		Damselfly and dragonfly larvae
	\vdash		Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
	\exists		Mussels/Clams (not <i>Corbicula</i>) Other fish
	R		Salamanders/tadpoles Snails
	Ħ		Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	\boxtimes A	⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□a □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	LB '	RB	
	□Y ⊠N	∐Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a ☐A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	\Box D	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	□E ⊠F		oed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	Check a ☐A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	⊠F		the above
18.	_		sment reach metric (skip for Tidal Marsh Streams)
	\boxtimes A	Stream	Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C		d (example: scattered trees) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.						
	Vegetated Wooded LB RB LB RB ☑A ☑A<						
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).						
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation						
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet						
	LB RB LB RB LB RB A A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)						
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).						
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground						
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.						
	LB RB □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.						
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB						
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. 						
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or						
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.						
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.						
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230						
Note	rs/Sketch:						

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	9/12/2023			
Stream Category	Mb1	Assessor Name/Organization	JK, MI			
Notes of Field Assessment Form (Y/N) NO						
Presence of regulator	ory considerations (Y/N)		NO			
Additional stream inf	NO					
NC SAM feature type	Perennial					

e (perennial, intermittent, Tidal Marsh Stream)	Perennia	<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
	MEDIUM	
(2) In-stream Habitat (3) Baseflow	HIGH	
• •	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability		
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

		ACC	ompanies Oser wi	alluai version 2. i	
USACE AI				NCDWR #:	
					7.5-minute topographic quadrangle,
					d on the same property, identify and
and explan	ations of requested	d information. Record in	the "Notes/Sketch	" section if supplementary meas	Iser Manual for detailed descriptions urements were performed. See the
		mples of additional meas			41
			E ASSESSMENT	AREA (do not need to be withi	n the assessment area).
	/SITE INFORMATI / name (if any):	ON: Bad Creek Pumped Sto	orage Project 3	2. Date of evaluation: 10/2/20	123
-	t/owner name:	Duke Energy		1. Assessor name/organization:	EBS / HDR
5. County:	.,			6. Nearest named water body	
7. River ba	sin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
8. Site coor	rdinates (decimal d	egrees, at lower end of a	ssessment reach)	•	
	NFORMATION: (database) ber (show on attack	epth and width can be a ched map): Limber P		ength of assessment reach evalu	uated (feet): 200
		in riffle, if present) to top			Jnable to assess channel depth.
12. Channe	el width at top of ba	nk (feet): 20	13. Is as	ssessment reach a swamp steam	ı? ∐Yes ∐No
14. Feature	e type: ⊠Perennia	I flow Intermittent flow	v	tream	
_	CATEGORY INFOR		_	_	_
15. NC SAI	M Zone:	⊠ Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
	ted geomorphic shape (skip for	\square A \longrightarrow		⊠B	
	larsh Stream):	(more sinuous strear	n. flatter vallev slor	oe) (less sinuous st	ream, steeper valley slope)
	hed size: (skip	☐Size 1 (< 0.1 mi²)			
	al Marsh Stream)			(0.0 to 1	
	AL INFORMATIÓN	٧:			
18. Were re	egulatory considera	ations evaluated?	s ⊠No If Yes, che	eck all that apply to the assessme	ent area.
	ion 10 water	☐Classified Tr			rshed (I II III IIV V)
	ential Fish Habitat	☐Primary Nur	•		s/Outstanding Resource Waters
	icly owned property		oarian buffer rule in		
	dromous fish	☐303(d) List	listed protected sp	□CAMA Area of Envi ecies within the assessment are	ronmental Concern (AEC)
	species:	oi a lederal alld/oi state	nsted protected sp	ecies within the assessment area	a.
	gnated Critical Hab	pitat (list species)			
			neasurements inclu	ıded in "Notes/Sketch" section o	r attached?
4 01	. 1. 1. 1. 1		. f O' 4 . t	and Tidal Manak O(access)	
 Channe ⊠A 		ment reacn metric (skip t assessment reach.	for Size 1 Stream	ns and Tidal Marsh Streams)	
□B	No flow, water in				
□c	No water in asse				
2. Eviden	ce of Flow Restric	ction – assessment read	ch metric		
				e-pool sequence is severely affe	ected by a flow restriction or fill to the
	point of obstructi	ng flow or a channel cho	oked with aquatic r	nacrophytes <u>or</u> ponded water <u>or</u>	impoundment on flood or ebb within
		reach (examples: unders	sized or perched co	ulverts, causeways that constrict	the channel, tidal gates, debris jams,
⊠B	beaver dams). Not A				
Feature □A		ment reach metric	Itarad nattarn (ava	mples: straightening, modificatio	n above or below authort)
⊠A ⊠B	Not A	assessifient reacti has a	illereu pallerri (exa	imples. straightening, modification	if above of below curverty.
		ofile acceptant read	h matria		
4. Feature □ A	_	ofile – assessment reach		aam profile (evamples: channel	down-cutting, existing damming, over
					has not reformed from any of these
	disturbances).	55,		11 1	2, 2. 2
⊠B	Not A				
5. Signs o	of Active Instabilit	y – assessment reach r	metric		
Consid	er only current in	stability, not past ever	nts from which th		ered. Examples of instability include
active b	ank failure, active	channel down-cutting (he			uch as concrete, gabion, rip-rap).
⊠A □¤	< 10% of channe				
□в □C	10 to 25% of cha > 25% of channe				

6.				- streamside area						
	LB	sider for th RB	e Leit Bank (L	.B) and the Right E	Dalik (KB).					
	⊠A □B	⊠A □B	Moderate e reference in	nteraction (examples	ns (examples: be s: limited streams	rms, levee ide area ad	es, down- ccess, dis	cutting, aggradation, d	redging) that adversely a rrough streamside area, l mosquito ditching])	
	□c	□c	Extensive e [examples: of flood flow	evidence of condition causeways with floo s through streamsid itching]) or floodplai	ns that adversely odplain and chann de area] <u>or</u> too mud	affect refe nel constric ch floodpla	rence inte tion, bulk iin/intertic	eraction (little to no floo heads, retaining walls, lal zone access [examp	odplain/intertidal 320ne ac fill, stream incision, disrup bles: impoundments, inter s a man-made feature o	ption nsive
7.		•		sessment reach/in	itertidal zone me	tric				
	□A □B □C □D	Excess Notices Odor (ored water in sisted water in sisted water in sistem sedimental able evidence on the including nations including nations.	ition (burying of stre of pollutant discharg atural sulfide odors)	am features or int ges entering the a)	ertidal zon ssessmen	ie) t reach <u>a</u>	er discoloration, oil she	ality problem	
	ШΕ	Section		collected data indi	cating degraded v	water qual	ity in the	assessment reach. (Cite source in "Notes/Ske	∍tch″
	□F □G □H □I	Excess	sive algae in st ded marsh veg		one			nowing, destruction, etc	;)	
	⊠j		no stressors	(6,6)		511 00011011	,			
8.		Size 1 or 2 s Drough Drough	treams, D1 dro nt conditions <u>ar</u>	<u>nd</u> no rainfall or rain <u>nd</u> rainfall exceeding	nsidered a drough fall not exceeding	nt; for Size 1 1 inch wit	hin the la	eams, D2 drought or h st 48 hours	igher is considered a drou	ıght.
9.	Larg □Ye			- assessment reaction too large or danger		f Yes, skip	to Metric	: 13 (Streamside Area	Ground Surface Condition	n).
10.			⊠No Degra sedim	nentation, mining, e	oitat over majority excavation, in-stre	am harde	ning [for	example, rip-rap], rec	stressors include exces ent dredging, and snago	
	10h	Chook all	•	uate for Size 4 Coa		•	•	to Metric 12) ize 4 Coastal Plain st	roams)	
	100.	□A N	Multiple aquation	c macrophytes and a orts, lichens, and alg and/or leaf packs a	aquatic mosses gal mats)	Check for Tidal and Marsh Streams Conly	∏F □G □H	5% oysters or other r Submerged aquatic v Low-tide refugia (poo	natural hard bottoms regetation	
		⊠C M ⊠D 5	5% undercut ba	and logs (including lanks and/or root ma	ats and/or roots	Check f Marsh S	□J □J	Sand bottom 5% vertical bank alor Little or no habitat	ng the marsh	
		_	n banks extend ₋ittle or no habi	d to the normal wetto itat	ed perimeter					
****	*****	******	**************************************	INING QUESTIONS	S ARE NOT APPI	LICABLE	FOR TID	AL MARSH STREAMS	\$*************************************	*
11.	Bedf	orm and S	ubstrate – ass	sessment reach mo	etric (skip for Siz	e 4 Coast	al Plain	streams and Tidal Ma	rsh Streams)	
	11a.	□Yes	⊠No Is asse	ssment reach in a r	natural sand-bed s	stream? (s	kip for C	oastal Plain streams		
	11b.	⊠A F ⊠B F	Riffle-run sectic Pool-glide secti	eck the appropriate on (evaluate 11c) ion (evaluate 11d) n absent (skip to M	, ,	: Life)				
	11c.	In riffle sec at least or (R) = pres should not	ctions, check al ne box in each ent but ≤ 10%, t exceed 100%	Il that occur below the row (skip for Size , Common (C) = > for each assessme	ne normal wetted pe 4 Coastal Plain 10-40%, Abundar	perimeter o	ınd Tidal	Marsh Streams). No	ner or not submerged. Ch : Present (NP) = absent, I %. Cumulative percenta	Rare
				A P	Bedrock/sapro Boulder (256 Cobble (64 – 2	– 4096 mn 256 mm)	n)			
					Gravel (2 – 64 Sand (.062 – 3 Silt/clay (< 0.0 Detritus	2 mm)				
	114				Artificial (rip-ra	• •	,	streams and Tidal Ma	rch Strooms	
	i iu.	i.e.s	THE POP	olo illica Mitti Scalili	Since (Skip IOI SIZ	- 00a3i	ar ridiil i	on ourns and Huai Ma	ion oncamo _j	

12.			seessment reach metric (skip for Tidal Marsh Streams)	
	12a. ⊠' If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? t one of the following reasons and skip to Metric 13. ☐No Water ☐Other:	
	12b. ⊠	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tapply. If No, skip to Metric 13.	hat
	1		Adult frogs	
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)	
	H		Beetles Caddisfly larvae (T)	
			Asian clam (<i>Corbicula</i>)	
			Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae	
			Dipterans Mayfly larvae (E)	
			Megaloptera (alderfly, fishfly, dobsonfly larvae)	
]Midges/mosquito larvae]Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i>	
			Mussels/Clams (not <i>Corbicula</i>) Other fish	
	Ë	\boxtimes	Salamanders/tadpoles	
	\exists]Snails]Stonefly larvae (P)	
			Tipulid larvae	
13.	Streams Conside	ide Area	n Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland run	off.
	LB ⊠A	RB <u>⊠</u> A	Little or no alteration to water storage capacity over a majority of the streamside area	
	□B □C	∐B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compacti livestock disturbance, buildings, man-made levees, drainage pipes)	on,
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.	
	⊠a ⊟B ⊟C	⊠a □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep	
15.	ce – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norm of assessment reach.	nal		
	LB □Y ⊠N	RB □Y ⊠N	Are wetlands present in the streamside area?	
16.	Baseflov	w Contril	butors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)	
	Check a ⊠A		putors within the assessment reach or within view of <u>and</u> draining to the assessment reach. s and/or springs (jurisdictional discharges)	
	□В	Ponds (include wet detention basins; do not include sediment basins or dry detention basins)	.:\
	□C □D	Evidenc	tion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, we e of bank seepage or sweating (iron in water indicates seepage)	;II <i>)</i>
	⊠E □F		bed or bank soil reduced (dig through deposited sediment if present) the above	
17.			tors – assessment area metric (skip for Tidal Marsh Streams)	
	Check a ☐A		oply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)	
	□B □C	Obstruc	tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) tream (≥ 24% impervious surface for watershed)	
	\Box D	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach	
	□E ⊠F		nent reach relocated to valley edge the above	
18.	_		sment reach metric (skip for Tidal Marsh Streams)	
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)	
	□B □C	Degrade	ed (example: scattered trees) shading is gone or largely absent	

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.						
	Vegetated Wooded LB RB LB RB ☑A ☑A<						
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).						
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation						
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet						
	LB RB LB RB LB RB A A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)						
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).						
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground						
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.						
	LB RB □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.						
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB						
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. 						
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or						
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.						
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.						
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230						
Note	rs/Sketch:						

Limber Pole

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	10/2/2023					
Stream Category	Mb3	Assessor Name/Organization	EBS / HDR					
Notes of Field Asses	\ /		NO					
Presence of regulator	NO							
Additional stream inf	NO							
NC SAM feature type	Perennial							

e (perennial, intermittent, Tidal Marsh Stream)	Perennia	<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
• •	HIGH	
(2) Streamside Area Vegetation		
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

		ACC	ompanies Oser Mi	allual Version 2.1	
USACE A				NCDWR #:	
					7.5-minute topographic quadrangle,
					on the same property, identify and
and expla	nations of requested	d information. Record in	the "Notes/Sketch	" section if supplementary meas	ser Manual for detailed descriptions urements were performed. See the
		mples of additional meas		/ be relevant. AREA (do not need to be withi l	n the assessment area)
PROJEC	T/SITE INFORMATI	ON:			
-	name (if any):	Bad Creek Pumped Sto		2. Date of evaluation: 10/2/20	
	nt/owner name:	Duke Energy		Assessor name/organization:	EBS / HDR
5. County		0	6	i. Nearest named water body	11 10
7. River b		Savannah		on USGS 7.5-minute quad: 34.991628, -83.0200869	Howard Creek
	•	egrees, at lower end of a	•	34.991628, -83.0200869	
9. Site nui	mber (show on attac	* * *	Creek 10. Le	ength of assessment reach evalu	
		in riffle, if present) to top	· · · · · -		Jnable to assess channel depth.
	nel width at top of ba			sessment reach a swamp steam	n? ∐Yes ∐No
		I flow Intermittent flow	v ∐Tidai Marsh S	tream	
_	CATEGORY INFO		□ D: 1 (D)	П О (. I В . : . //)	
15. NC SA	AM Zone:	⊠ Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
				\	
10 5 "		V			
	ated geomorphic shape (skip for	\Box A		⊠B	
	Marsh Stream):	(more sinuous strear	n, flatter valley slop	oe) (less sinuous st	ream, steeper valley slope)
17. Water	shed size: (skip	☐Size 1 (< 0.1 mi²)		· ·	
	dal Marsh Stream)			2.2.2.2.2.0 (0.0.1.5	
	NAL INFORMATIÓN	N:			
18. Were	regulatory considera	ations evaluated?	s ⊠No If Yes, che	ck all that apply to the assessme	ent area.
□Sed	ction 10 water	☐Classified Ti		☐Water Supply Water	rshed (I II III IIV V)
	sential Fish Habitat	☐Primary Nur	sery Area		s/Outstanding Resource Waters
	olicly owned property		oarian buffer rule in		
	adromous fish	☐303(d) List			ronmental Concern (AEC)
		of a federal and/or state	listed protected spe	ecies within the assessment area	a.
	t species: signated Critical Hab	sitat (list angeiga)			
	•	· · · /	neasurements inclu	ded in "Notes/Sketch" section or	rattached? □Yes ⊠No
15.710 40	dational stream into	ппаноп/заррістістагу п	icasarements more	ded in Notes/Oreton Section of	attached: 163 Mive
			for Size 1 stream	s and Tidal Marsh Streams)	
⊠A		t assessment reach.			
⊟в □C	No flow, water in No water in asse				
		ction – assessment read			4. 11 6 6 6 6 6 6
□A	At least 10% of a	assessment reach in-stre	eam nabitat or riffle	e-pool sequence is severely aπe	cted by a flow restriction or fill to the impoundment on flood or ebb within
	the assessment	reach (examples: unders	sized or perched cu	liverts, causeways that constrict	the channel, tidal gates, debris jams,
	beaver dams).			,,,	
⊠в	Not A				
3. Featu	re Pattern – assess	ment reach metric			
□A	A majority of the	assessment reach has a	ltered pattern (exa	mples: straightening, modificatio	n above or below culvert).
⊠B	Not A				·
4. Featui	re Longitudinal Pro	ofile – assessment reac	h metric		
□A	_			eam profile (examples: channel	down-cutting, existing damming, over
					has not reformed from any of these
K-7 -	disturbances).			•	-
⊠в	Not A				
5. Signs	of Active Instabilit	y – assessment reach r	metric		
Consi	der only current ir	stability, not past ever	nts from which th		ered. Examples of instability include
active	bank failure, active	channel down-cutting (he			uch as concrete, gabion, rip-rap).
⊠A	< 10% of channe				
В	10 to 25% of cha				
□с	> 25% of channe	น นเอเสมเซ			

Ο.					nd the Right E						
	LB	RB	io Loit L	Junik (LD) ui	ia the ragin L	Julik (IND).					
	⊠a □B	⊠A ∏B	Mod- refer	erate eviden ence interac	ce of condition tion (examples	s: limited stream	perms, levenside area a	es, down- access, dis	cutting, aggradation, c	lredging) that adversely affernough streamside area, leak	
	□c	□с	Exte [exal of flo mose	nsive eviden mples: caus ood flows thro	nce of condition eways with floo ough streamsion g]) or floodpla	ns that adversel odplain and cha de area] <u>or</u> too m	y affect ref nnel constri uch floodpl	erence int iction, bulk lain/intertic	eraction (little to no flo cheads, retaining walls, dal zone access [exam	odplain/intertidal zone acces fill, stream incision, disruptic ples: impoundments, intensiv is a man-made feature on a	n e
7.	Wate	er Quality	Stresso	rs – assessi	ment reach/ir	ntertidal zone m	etric				
	Chec □A	ck all that		tar in atraam	or intertidal =	rono (millor white	blue unn	otural wat	or discoloration, oil abo	on atroom foom)	
	□В					eam features or i			er discoloration, oil she	en, sileani loani)	
					lutant dischare sulfide odors		assessme	nt reach <u>a</u>	nd causing a water qua	ality problem	
	ΠE						d water qua	ality in the	assessment reach.	Cite source in "Notes/Sketch	า"
	□F	sectio Livest		access to st	tream or interti	idal zone					
	□G	Exces	ssive alga	ae in stream	or intertidal zo	one				-\	
	□H					idai zone (remov ain in "Notes/Ske			nowing, destruction, et	>)	
	\boxtimes J	Little t	to no stre	essors							
8.		B Drought conditions and rainfall exceeding 1 inch within the last 48 hours									
9.	Larg □Ye				essment reac arge or dange		If Yes, ski	p to Metric	c 13 (Streamside Area	Ground Surface Condition).	
10.						reach metric					
	10a.	∐Yes	⊠No	sedimentat	tion, mining, e		ream hard	ening [for	example, rip-rap], red	f stressors include excessivent dredging, and snagging	
	10b.							<u> </u>	ize 4 Coastal Plain st		
		_	(include	liverworts, li	chens, and alg		ami	□F □G	5% oysters or other s Submerged aquatic	vegetation	
			Multiple vegetation		r leaf packs a	and/or emergent	k for . Stre Only	□H □I	Low-tide refugia (pod Sand bottom	ols)	
		⊠c	Multiple	snags and lo	ogs (including		Chec	∐J □K	5% vertical bank alo	ng the marsh	
					ne normal wett	ats and/or roots ted perimeter			Little or no habitat		
		□E	Little or	no habitat							
****	*****	*****	*****	*REMAINING	G QUESTION	S ARE NOT AP	PLICABLE	FOR TID	AL MARSH STREAM	S*******	
11.	Bedf	orm and S	Substrat	e – assessn	nent reach m	etric (skip for §	ize 4 Coas	stal Plain	streams and Tidal Ma	rsh Streams)	
	11a.	□Yes	⊠No	ls assessme	ent reach in a	natural sand-bed	d stream? (skip for C	oastal Plain streams)	
	11b.				e appropriate	e box(es).					
					valuate 11c) valuate 11d)						
		□с	Natural I	bedform abs	ent (skip to M	letric 12, Aquat	ic Life)				
	11c.	at least of (R) = pres	ne box i sent but	in each row ≤ 10%, Com	(skip for Size nmon (C) = >	e 4 Coastal Plai 10-40%, Abunda	n streams	and Tidal	Marsh Streams). No	her or not submerged. Chec t Present (NP) = absent, Rai 0%. Cumulative percentage	re
			ot exceed R	C A	ach assessme 、 P	ent reach.					
						Bedrock/sap Boulder (25		ım)			
					<u> </u>	Cobble (64	– 256 mm)				
		H	H			Gravel (2 – Sand (.062 -					
					į į	Silt/clay (< 0					
		\boxtimes	\exists	H	d H	Detritus Artificial (rip	rap, concr	ete, etc.)			
	11d.	□Yes	⊠No	Are pools fill	led with sedim	nent? (skip for \$	ize 4 Coas	stal Plain	streams and Tidal Ma	rsh Streams)	

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Adult frogs
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
	\exists		Beetles Caddisfly larvae (T)
	\Box		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ĭ	\boxtimes	Damselfly and dragonfly larvae
	\vdash		Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
	R		Mussels/Clams (not <i>Corbicula</i>) Other fish
	Ë	\boxtimes	Salamanders/tadpoles
	블	$\overline{\boxtimes}$	Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.		r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runof
	\boxtimes A	RB ⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	∐B ∐C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	⊠a ⊟B ⊟C	⊠a □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside	r for the	te – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach.
	LB ⊠Y	RB ⊠Y	Are wetlands present in the streamside area?
	□N	□N	The wellands present in the streamside area.
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	\boxtimes A	Streams	outors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) iion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir
	□D ⊠E	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	□F		ped or bank soil reduced (dig through deposited sediment if present) the above
17.			tors – assessment area metric (skip for Tidal Marsh Streams)
	Check a ☐A		pry. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) tream (≥ 24% impervious surface for watershed)
	\Box D	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach
	□E ⊠F		nent reach relocated to valley edge the above
18.	_		sment reach metric (skip for Tidal Marsh Streams)
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C	Degrade	ed (example: scattered trees) shading is gone or largely absent
	_	-	

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	Vocation
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB LB RB A A A A A A A A A A A Row crops B B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB □A □A The total length of buffer breaks is < 25 percent. □B □B The total length of buffer breaks is between 25 and 50 percent. □C □C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	rs/Sketch:

Howard Creek

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	10/2/2023			
Stream Category	Mb3	Assessor Name/Organization	EBS / HDR			
Notes of Field Assessment Form (Y/N) NO						
Presence of regulator	NO					
Additional stream inf	NO					
NC SAM feature type	Perennial					

(perennial, intermittent, ridal warsh offeatin)	Toronnia	<u>'</u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA NA	
· · · · · ·	NA NA	
(2) Tidal Marsh Stream Stability (3) Tidal Marsh Channel Stability		
	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

USACE AID #:			NCDWR #:	
INSTRUCTIONS: Attach a	sketch of the assessment a	area and photograp	ohs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the location of the	stream reach under evalu	uation. If multiple :	stream reaches will be evaluated	d on the same property, identify and
number all reaches on the at	tached map, and include a	a separate form for	each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations of request	ed information. Record in	the "Notes/Sketch	" section if supplementary meas	urements were performed. See the
NC SAM User Manual for ex	amples of additional meas	surements that may	y be relevant.	
NOTE EVIDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be within	n the assessment area).
PROJECT/SITE INFORMAT				
1. Project name (if any):	Bad Creek II Power Co		2. Date of evaluation: 10/18/2	
3. Applicant/owner name:	Duke Energy		1. Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee		6. Nearest named water body	
7. River basin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
8. Site coordinates (decimal	degrees, at lower end of a	assessment reach)	34.995706, -83.000461	
STREAM INFORMATION: (9. Site number (show on atta			ength of assessment reach evalu	nated (feet): 300
11. Channel depth from bed	(in riffle, if present) to top	of bank (feet):	<u>1-3</u> □U	Jnable to assess channel depth.
12. Channel width at top of b			ssessment reach a swamp steam	n? □Yes □No □
14. Feature type: ☐Perenn	ial flow ⊠Intermittent flov	w □Tidal Marsh S	tream	
STREAM CATEGORY INFO	RMATION:			
15. NC SAM Zone:		☐ Piedmont (P)	☐ Inner Coastal Plain (I)	Outer Coastal Plain (O)
			V	,
16. Estimated geomorphic			Mp.	
valley shape (skip for	∐A		⊠B	
Tidal Marsh Stream):	(more sinuous strear	m, flatter valley slop	pe) (less sinuous st	ream, steeper valley slope)
17. Watershed size: (skip	☐ Size 1 (< 0.1 mi^2)	☐Size 2 (0.1 to	$< 0.5 \text{ mi}^2$) \square Size 3 (0.5 to <	5 mi²)
for Tidal Marsh Stream	•			
ADDITIONAL INFORMATION		_		
			eck all that apply to the assessme	
Section 10 water	⊠Classified T			rshed (I I I I I I I I I I I I I I I I I I
☐Essential Fish Habitat				s/Outstanding Resource Waters
☐Publicly owned proper		parian buffer rule in		i
☐Anadromous fish	303(d) List	listed protected sp	ecies within the assessment area	ronmental Concern (AEC)
List species:	e oi a ledelal allu/oi state	listed protected sp	ecies within the assessment area	a.
☐Designated Critical Ha	ahitat (liet eneriee)			
_		neasurements inclu	uded in "Notes/Sketch" section or	attached? MYes IINo
15.7 (16 additional stream in	ormation/supplementary in	neasarements more	idea iii 140tes/Oketeii seetioii oi	attached: Tes No
1. Channel Water – assess	sment reach metric (skip	o for Size 1 stream	ns and Tidal Marsh Streams)	
	ut assessment reach.			
⊠B No flow, water i	•			
☐C No water in ass	essment reach.			
2. Evidence of Flow Restr	iction – assessment read	ch metric		
				cted by a flow restriction or fill to the
				impoundment on flood or ebb within
	t reach (examples: under	sizea or perchea ci	ulverts, causeways that constrict	the channel, tidal gates, debris jams,
beaver dams). □B Not A				
3. Feature Pattern – asses				
	e assessment reach has a	altered pattern (exa	mples: straightening, modificatio	n above or below culvert).
⊠B Not A				
4. Feature Longitudinal P	rofile – assessment reac	h metric		
				down-cutting, existing damming, over
	e aggradation, dredging,	and excavation wh	nere appropriate channel profile	has not reformed from any of these
disturbances). ⊠B Not ∆				
⊠B Not A				
	ity – assessment reach ı			
				ered. Examples of instability include
	• • • • • • • • • • • • • • • • • • • •	ead-cut), active wid	ening, and artificial hardening (s	uch as concrete, gabion, rip-rap).
☑A < 10% of chanr☐B 10 to 25% of chance				
□C > 25% of chann				

6.	Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).									
	Cons LB	sider for t RB	he Left	Bank (LE	3) and the	Right Ba	ink (RB).			
	□a ⊠B	□A ⊠B	Mod	derate evi	idence of c	conditions		rms, leve	es, down -	eraction cutting, aggradation, dredging) that adversely affect cruption of flood flows through streamside area, leaky
	□с	□c	or in Extended [exa of fl mos	ntermitten ensive ev amples: o lood flows	it bulkhead idence of d auseways through st ching]) <u>or</u> f	ls, causev conditions with flood reamside	ways with floodpl s that adversely a dplain and chann aarea] <u>or</u> too mud	lain const affect refe el constric ch floodpla	riction, mi erence inte ction, bulk ain/intertid	nor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access heads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.		-		ors – ass	essment r	each/inte	ertidal zone met	tric		
	□A	k all that Disco		ater in str	eam or inte	ertidal zor	ne (milkv white, ł	olue, unna	atural wate	er discoloration, oil sheen, stream foam)
	□в	<u>Exce</u>	<u>ssive</u> se	dimentati	on (burying	g of strear	m features or inte	ertidal zor	ne)	
					f pollutant (tural sulfide		s entering the as	ssessmer	it reach <u>ai</u>	nd causing a water quality problem
	E E						ating degraded v	vater qua	lity in the	assessment reach. Cite source in "Notes/Sketch"
		section		h 000000	to otroom .	ar intartid	al zana			
	□F □G				to stream o eam or inte					
	ПН	Degra	aded ma	arsh vege	tation in the	e intertida	al zone (removal			nowing, destruction, etc)
	⊠I □J		r: to no sti			_ (explain	n in "Notes/Sketo	n section	1)	
8.	Rece	nt Weath	er – wa	tershed r	netric (ski	ip for Tid	lal Marsh Strear	ns)		
										eams, D2 drought or higher is considered a drought.
	□А		_				all not exceeding 1 inch within the			st 48 hours
	⊠c			onditions	<u>.</u> rannan 07	.cocanig	T IIIOTT WILLIIIT LITO	1001	ouro	
9.	Larg e		-		assessme			Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.	Natu	ral In-stre	eam Hal	bitat Type	es – asses	sment re	each metric			
	10a.	⊠Yes	□No	sedime	entation, m	iining, exc		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macropnyt ts, lichens,		quatic mosses al mats)	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		⊠в	Multiple	e sticks a			d/or emergent	k for ⊺ h Strei Only	⊟.H	Low-tide refugia (pools)
		⊠c	vegetat Multiple		nd logs (in	cluding la	ıp trees)	arsh	□l	Sand bottom 5% vertical bank along the marsh
		⊠D	5% und	dercut baı	nks and/or	root mat	s and/or roots	Ď ≌	□κ	Little or no habitat
		□E		s extend r no habita		nal wetted	d perimeter			
		_								
****	*****	******	******	**REMAI	ING QUE	STIONS	ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS************************************
11.	Bedf	orm and	Substra	ite – asse	ssment re	each met	ric (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)
	11a.	⊠Yes	□No	Is asses	sment read	ch in a na	atural sand-bed s	stream? (s	skip for C	oastal Plain streams)
	11b.	Bedform ⊠A			k the app		box(es).			
		⊠в	Pool-gl	ide sectio	n (evaluat	e 11d)				
		□с	Natural	bedform	absent (sk	kip to Met	tric 12, Aquatic	Life)		
	11c.									essment reach – whether or not submerged. Check Marsh Streams). Not Present (NP) = absent, Rare
		(R) = pre	esent bu	t <u><</u> 10%,	Common ((C) = > 10	0-40%, Abundan			Predominant (P) = > 70%. Cumulative percentages
		should no	ot excee R	ed 100% f C	or each as A	sessment P	t reach.			
						<u> </u>	Bedrock/sapro	lite		
		\boxtimes					Boulder (256 -		m)	
		H		\boxtimes		H	Cobble (64 – 2 Gravel (2 – 64			
							Sand (.062 – 2	2 mm)		
				H	H	H	Silt/clay (< 0.0 Detritus	lo2 mm)		
		$\overline{\boxtimes}$					Artificial (rip-ra	ap, concre	ete, etc.)	
	11d.	∐Yes	⊠No	Are pool	ls filled with	h sedimer	nt? (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. □	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic replies Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
	Ë		Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	R		Damselfly and dragonfly larvae Dipterans
	Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
	H		Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
			Other fish Salamanders/tadpoles
	Ä		Snails Stonefly larvae (P)
	Ë		Tipulid larvae
13.		ide Area	Worms/leeches Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)
	LB	RB	_eft Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□a □B	□a □B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	□с	□с	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B □C	□A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted pe	r for the erimeter o	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma f assessment reach.
	LB □Y	RB □Y	Are wetlands present in the streamside area?
16	⊠N Basefloy	⊠N w Contrib	utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a	II contrib	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach.
	⊠A □B	Ponds (ii	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□c □d		on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	\square A		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		that the streamside area has been modified resulting in accelerated drainage into the assessment reach ent reach relocated to valley edge
	⊠F		he above
18.	_		ment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A □B □C	Stream s Degrade	hading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) hading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □ A □ A □ A □ A □ A ≥ 100 feet wide or extends to the edge of the watershed □ B □ B □ B □ B From 50 to < 100 feet wide □ C □ C □ C □ C □ C From 30 to < 50 feet wide □ D □ D □ D □ D □ D From 10 to < 30 feet wide □ E □ E □ E □ E □ E < 10 feet wide or no trees
20.	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB □ A □ A □ A □ A □ A □ A □ A Row crops □ B □ B □ B □ B □ B □ B □ B Maintained turf □ C □ C □ C □ C □ C □ C □ C Pasture (no livestock)/commercial horticulture □ D □ D □ D □ D □ D □ D □ D □ Pasture (active livestock use)
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A Medium to high stem density B B Low stem density C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB A The total length of buffer breaks is < 25 percent. B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB □ A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □ B □ B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. □ C □ C □ C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. □Yes □No Was conductivity measurement recorded? If No, select one of the following reasons. □No Water □Other: 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
	s/Sketch: ring of vegetation and ATV trail crossing was observed.

Stream 12

MEDIUM

	Addon	pames osci manaai veisi	011 2.1	
Stream Site Name	Bad Creek II Power	Date of Assessmen	t 10/18/23	
	Complex Project	_		
Stream Category	Mb3	Assessor Name/Organization	n Paul Brigh	t / HDR
Notes of Field Asses	ssment Form (Y/N)		YES	
	ory considerations (Y/N)		YES	
	formation/supplementary measu	urements included (Y/N)	YES	
	e (perennial, intermittent, Tidal		Intermitter	nt .
•		·		_
			USACE/	NCDWR
	Function Class Rating Sum	mary .	All Streams	Intermittent
	(1) Hydrology		MEDIUM	
	(2) Baseflow	_	LOW	
	(2) Flood Flow	<u> </u>	HIGH	
	(3) Streamside A		MEDIUM	
	, , , ,	ain Access	MEDIUM	
	, ,	d Riparian Buffer	HIGH	
	(4) Microto		NA	NA
	(3) Stream Stabil	· -	HIGH	
	(4) Channe	el Stability	HIGH	
	(4) Sedime	nt Transport	HIGH	
	(4) Stream	Geomorphology	HIGH	
	(2) Stream/Interti	dal Zone Interaction	NA	NA
	(2) Longitudinal Ti	dal Flow	NA	NA
	(2) Tidal Marsh St	ream Stability	NA	NA
	(3) Tidal Ma	arsh Channel Stability	NA	NA
	(3) Tidal Ma	arsh Stream Geomorphology	NA	NA
	(1) Water Quality		LOW	_
	(2) Baseflow		LOW	_
	(2) Streamside Area Ve	getation	HIGH	_
	(3) Upland Pollut	ant Filtration	HIGH	
	(3) Thermoregula	ition	MEDIUM	
	(2) Indicators of Stresso	ors	NO	
	(2) Aquatic Life Toleran	ce	LOW	
	(2) Intertidal Zone Filtrati	 on	NA	NA
	(1) Habitat		HIGH	
	(2) In-stream Habitat		MEDIUM	
	(3) Baseflow		LOW	
	(3) Substrate		HIGH	
	(3) Stream Stabil	ity	HIGH	
	(3) In-stream Hab	· —	MEDIUM	
	(2) Stream-side Habitat	-	HIGH	-
	(3) Stream-side H		HIGH	-
	(3) Thermoregula		HIGH	
	(2) Tidal Marsh In-stream		NA	NA
	(3) Flow Restrictio		NA	NA
	(3) Tidal Marsh St		NA	NA
	• ,	arsh Channel Stability	NA	NA
		arsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-		NA	NA NA
	(2) Intertidal Zone		NA NA	NA NA
	\-,			147.

Overall

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

		oompamoo ooor ma	ilaai voioioii zii	
USACE AID #:			NCDWR #:	
INSTRUCTIONS	: Attach a sketch of the assessment	t area and photograph	ns. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the loc	ation of the stream reach under eva	aluation. If multiple st	tream reaches will be evaluated	on the same property, identify and
number all reach	es on the attached map, and include	a separate form for e	each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations	of requested information. Record in	n the "Notes/Sketch"	section if supplementary measu	urements were performed. See the
NC SAM User M	anual for examples of additional mea	asurements that may	be relevant.	
NOTE EVIDENC	E OF STRESSORS AFFECTING TH	HE ASSESSMENT A	REA (do not need to be withir	n the assessment area).
PROJECT/SITE			D (
1. Project name (Date of evaluation: 10/18/2	
3. Applicant/own			Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee	6.	Nearest named water body	
7. River basin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
8. Site coordinate	es (decimal degrees, at lower end of	assessment reach):	34.993024, -82.997765	
	MATION: (depth and width can be how on attached map): S15		ngth of assessment reach evalu	ated (feet): 175
11. Channel dept	th from bed (in riffle, if present) to top	o of bank (feet):	I-2 □U	Inable to assess channel depth.
12. Channel widt	h at top of bank (feet): 12-15	13. Is ass	sessment reach a swamp steam	? ∐Yes ∐No
	⊠Perennial flow ☐Intermittent flo			
1	GORY INFORMATION:	_		
15. NC SAM Zon	e: Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
	_	_		
40 5 " , ,	V			
16. Estimated ge valley shape	Ι ΙΔ	\sim	⊠в	
Tidal Marsh		am, flatter valley slope	e) (less sinuous str	eam, steeper valley slope)
İ	, <u> </u>) Size 2 (0.1 to	·	
17. Watershed si			< 0.5 mi ⁻) \(\text{\sqrt{3}} \) 3ize 3 (0.5 to <	
ADDITIONAL IN	•			
i	ory considerations evaluated? ⊠Ye	s Mo If Yes chec	rk all that annly to the assessme	ent area
Section 10				shed (□I □II □III □IV □V)
☐Essential F				s/Outstanding Resource Waters
_		liparian buffer rule in		
☐Anadromo				onmental Concern (AEC)
Document	ed presence of a federal and/or state			
List specie	s:			
☐Designate	d Critical Habitat (list species)			
19. Are additiona	I stream information/supplementary	measurements includ	ded in "Notes/Sketch" section or	attached? ⊠Yes □No
	er – assessment reach metric (ski	ip for Size 1 streams	s and Tidal Marsh Streams)	
	er throughout assessment reach.			
	low, water in pools only.			
☐C No v	vater in assessment reach.			
2. Evidence of	Flow Restriction – assessment rea	ach metric		
□A At le	ast 10% of assessment reach in-str	ream habitat or riffle-	-pool sequence is severely affe	cted by a flow restriction or fill to the
				impoundment on flood or ebb within
		ersized or perched cul	verts, causeways that constrict	the channel, tidal gates, debris jams,
	ver dams).			
⊠B Not	А			
3. Feature Patte	ern – assessment reach metric			
	ajority of the assessment reach has	altered pattern (exan	nples: straightening, modification	n above or below culvert).
⊠B Not	A			
4. Feature Long	gitudinal Profile – assessment reac	ch metric		
			am profile (examples: channel o	down-cutting, existing damming, over
				has not reformed from any of these
	urbances).		and appropriate entermor prome	
⊠B Not	,			
	ve Instability – assessment reach	metric		
_	<u> </u>		stream has currently recove	ered. Examples of instability include
	illure, active channel down-cutting (h			
	1% of channel unstable	.saa sat,, astivo wide	g, and armout naturaling (30	zo ao concrete, gabieri, rip rap).
	25% of channel unstable			
	5% of channel unstable			

6.			Interaction – streamside area metric				
	Cons LB	RB	Left Bank (LB) and the Right Bank (RB).				
	□a ⊠B	□A ⊠B	Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely afference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, lead or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])				
	□c	□с	Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone acce [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disrupti of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensi mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on interstream divide	ion ive			
7.			ressors – assessment reach/intertidal zone metric				
	Chec □A	k all that ap Discolo	oply. red water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)				
	В	Excess	ve sedimentation (burying of stream features or intertidal zone)				
	\Box D	Odor (n	ble evidence of pollutant discharges entering the assessment reach <u>and</u> causing a water quality problem ot including natural sulfide odors)				
	□E	Current section.	published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketo	ch"			
	□F □G		ck with access to stream or intertidal zone ve algae in stream or intertidal zone				
	□I □I	Degrad Other:	ed marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc) (explain in "Notes/Sketch" section) no stressors				
8.							
.		B Drought conditions and rainfall exceeding 1 inch within the last 48 hours					
9.	Large □Ye	e or Dangei	ous Stream – assessment reach metric Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).				
10.			n Habitat Types – assessment reach metric				
	10a.	∐Yes ∑	No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessi sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snaggir (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)				
	10b.		hat occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams) ultiple aquatic macrophytes and aquatic mosses = ω □F 5% oysters or other natural hard bottoms				
		(ii	ultiple aquatic macrophytes and aquatic mosses nclude liverworts, lichens, and algal mats) ultiple sticks and/or leaf packs and/or emergent egetation ultiple snags and logs (including lap trees) undercut banks and/or root mats and/or roots 5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat				
			egetation 성 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등				
		□D 5					
			banks extend to the normal wetted perimeter ttle or no habitat				
****	*****	******	********REMAINING QUESTIONS ARE NOT APPLICABLE FOR TIDAL MARSH STREAMS************************************				
11.	Bedf	orm and Su	bstrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)				
			No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)				
	11b.	⊠A R ⊠B P	aluated. Check the appropriate box(es). iffle-run section (evaluate 11c) pol-glide section (evaluate 11d) atural bedform absent (skip to Metric 12, Aquatic Life)				
	11c.	_	ions, check all that occur below the normal wetted perimeter of the assessment reach – whether or not submerged. Che	ck			
		(R) = prese should not	e box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rant but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentage exceed 100% for each assessment reach. C A P				
			□ □ ⊠ Bedrock/saprolite				
			□ □ □ Boulder (256 – 4096 mm) □ □ □ □ Cobble (64 – 256 mm)				
			Gravel (2 – 64 mm) Sand (.062 – 2 mm)				
] ⊠ □ □ Silt/clay (< 0.062 mm)				
			Artificial (rip-rap, concrete, etc.)				
	11d.	☐Yes ▷	No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)				

-		sessment reach metric (skip for Tidal Marsh Streams)
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
12b. □	Yes 🏻	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
1 		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
Ä		Aquatic replices Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
Ë		Caddisfly larvae (T)
\exists		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
R		Damselfly and dragonfly larvae Dipterans
Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
H		Midges/mosquito larvae
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
		Other fish Salamanders/tadpoles
Ä		Snails
Ë		Stonefly larvae (P) Tipulid larvae
	· 	Worms/leeches
Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
□A	□A □B	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction.
		livestock disturbance, buildings, man-made levees, drainage pipes)
Conside LB	r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
∐A □B □C	∐A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma If assessment reach
LB .	RB	
□N	□N	Are wetlands present in the streamside area?
		utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach.
\boxtimes A	Streams	and/or springs (jurisdictional discharges)
□c	Obstruct	nclude wet detention basins; do not include sediment basins or dry detention basins) on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
		e of bank seepage or sweating (iron in water indicates seepage) sed or bank soil reduced (dig through deposited sediment if present)
		the above
Check a	ll that ap	
∐A □B		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
□C □D		ream (≥ 24% impervious surface for watershed) • that the streamside area has been modified resulting in accelerated drainage into the assessment reach
□E	Assessm	ent reach relocated to valley edge
		sment reach metric (skip for Tidal Marsh Streams)
Consider	aspect.	Consider "leaf-on" condition. hading is appropriate for stream category (may include gaps associated with natural processes)
□B □C	Degrade	d (example: scattered trees) hading is gone or largely absent
	12a. Sift 1 12b. Streams Conside Conside Wetland Conside Wetland Conside Wetland Conside Streams Conside B Check a 12a.	

19. Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank to the first break.							
	LB RB LB ⊠A ⊠A ⊠A □B □B □	A ⊠A ≥ 100 feet wide <u>or</u> extends to the edge of the watershed B □B From 50 to < 100 feet wide C □C From 30 to < 50 feet wide D □D From 10 to < 30 feet wide					
20.	Consider for left LB RB	- streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).					
	 ⋈ A ⋈ B ⋈ C ⋈ D ⋈ E 	Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation					
21.	Check all approprime within 30 feet of some of the following states of the following states of the control of the following states of the control of the con	A □A □A Row crops B □B □B Maintained turf					
00		D D D Pasture (active livestock use)					
22.	-	streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).					
	⊠A ⊠A □B □B □C □C	Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground					
23.	-	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.					
	□A □A ⊠B ⊠B □C □C	The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.					
24.		position – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to n habitat.					
	LB RB ⊠A ⊠A	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species,					
	□в □в	with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or					
	□c □c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.					
25.	25a. □Yes 🗵	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. No Water Other:					
	25b. Check the t □A < 46	pox corresponding to the conductivity measurement (units of microsiemens per centimeter). ☐ ☐ B 46 to < 67 ☐ C 67 to < 79 ☐ D 79 to < 230 ☐ E ≥ 230					
	es/Sketch:						
One	e A I V trail crossing	was observed at Stream 15. Small areas of vegetation along the stream have been removed.					

Stream 15

Stream Site Name	Bad Creek II Power Complex Project	Date of Assessment	10/18/23		
Stream Category	Paul Bright / F	IDR			
Notes of Field Assessment Form (Y/N) Presence of regulatory considerations (Y/N) YES YES					
Additional stream inf	YES YES				
IC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial					

(1		<u> </u>
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	MEDIUM	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	MEDIUM	
(3) Substrate	LOW	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(3) Thermoregulation (2) Tidal Marsh In-stream Habitat	NA	
` '	NA NA	
(3) Flow Restriction		
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone Overall	NA HIGH	

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quae and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, iden number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed described and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. SAM User Manual for examples of additional measurements that may be relevant. NC SAM User Manual for examples of additional measurements that may be relevant. NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECT/SITE INFORMATION: 1. Project name (if any): 3. Applican/Jowner name: Duke Energy 4. Assessor name/organization: Paul Bright / HDR 5. County: 5. County: 5. County: 5. River basin: Savannah 5. Size coordinates (declimal degrees, at lower end of assessment reach): STREAM INFORMATION: 5. Stream is coordinates (declimal degrees, at lower end of assessment reach): STREAM INFORMATION: 1. Channel depth from bed (in riffle, if present) to top of bank (feet): 2. Channel depth from bed (in riffle, if present) to top of bank (feet): 3. Length of assessment reach a swamp steam? Yes No 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2. Channel depth from bed (in riffle, if present) to top of bank (feet): 10. Length of assessment reach a swamp steam? Yes No 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 12. Channel depth from bed (in riffle, if present) to top of bank (feet): 13. Is assessment reach a swamp steam? Yes No 14. Feature type: Perennial flow Sintermittent flow Tidal Marsh Stream TREAM CATEGORY INFORMATION: 15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (I) Outer Coastal Plain (I) Outer
and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, iden number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed desc and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. So AM User Manual for examples of additional measurements that may be relevant. NC SAM User Manual for examples of additional measurements that may be relevant. NC SAM User Manual for examples of additional measurements that may be relevant. NCTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECT/SITE INFORMATION: 1. Project name (if any): 3. Applicant/owner name: 5. County: 5. County: 6. Nearest named water body on USGS 7.5-minute quad: 6. Nearest named water body on USGS 7.5-minute quad: 7. River basin: 8. Site coordinates (decimal degrees, at lower end of assessment reach): 8. Site coordinates (decimal degrees, at lower end of assessment reach): 9. Site number (show on attached map): 9. Site number (show on attached map): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 12. Channel width at top to bank (feet): 13. Is assessment reach a swamp steam? Ves Double to assess channel degrees, the stream of the presental flow Intermittent flow Tidal Marsh Stream 5. REAM CATEGORY INFORMATION: 15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (Outer Valley shape (skip for Tidal Marsh Stream) ADDITIONAL INFORMATION: 16. Estimated geomorphic Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (Outer Valley shape (skip for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area.
number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed desc and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. Stock SAM User Manual for examples of additional measurements that may be relevant. NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECTISTE INFORMATION: 1. Project name (if any): 3. Applicant/owner name: 5. County: 7. River basin: 8. Site coordinates (decimal degrees, at lower end of assessment reach): 3. Site coordinates (decimal degrees, at lower end of assessment reach): 3. Site coordinates (decimal degrees, at lower end of assessment reach): 3. Site number (show on attached map): 4. Feature type: Perennial flow Sintermitted 10. Length of assessment reach evaluated (feet): 10. Length of assessment reach as swamp steam? Yes No 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2. 2-4 Unable to assess channel depth. 3. Sample (skip for Tidal Marsh Stream): 15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (Outer Coastal Plain (Out
and explanations of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. Storage Project NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECT/SITE INFORMATION: 1. Project name (if any): 3. Applicant/owner name: Duke Energy 4. Assessor name/organization: 5. County: 7. River basin: Savannah 8. Site coordinates (decimal degrees, at lower end of assessment reach): STREAM INFORMATION: (depth and width can be approximations) 9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2. Patent in the save of
NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area). PROJECT/SITE INFORMATION: Bad Creek Pumped Storage Project 2. Date of evaluation: 10/18/2023 3. Applicant/owner name: Duke Energy 4. Assessor name/organization: Paul Bright / HDR 5. County: 5. County: 4. Assessor name/organization: Paul Bright / HDR 6. Nearest named water body On USGS 7.5-minute quad: Devils Fork 8. Site coordinates (decimal degrees, at lower end of assessment reach: 34.993519 -82.994454 STREAM INFORMATION: (depth and width can be approximations) 9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 100 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2-4 Unable to assess channel depth 12. Channel width at top of bank (feet): 6-12 13. Is assessment reach a swamp steam? Yes No 14. Feature type: Perennial flow Clintermittent flow Tidal Marsh Stream STREAM CATEGORY INFORMATION: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O 16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream) Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O 17. Watershed size: (skip Size 1 (< 0.1 miz) Size 2 (0.1 to < 0.5 miz) Size 3 (0.5 to < 5 miz) Size 4 (≥ 5 miz) 17. Watershed size: (skip Size 1 (< 0.1 miz) Size 2 (0.1 to < 0.5 miz) Size 3 (0.5 to < 5 miz) Size 4 (≥ 5 miz) 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area.
1. Project name (if any): 3. Applicant/owner name:
3. Applicant/owner name: Duke Energy 4. Assessor name/organization: Paul Bright / HDR 5. County: 6. Nearest named water body 5. River basin: Savannah on USGS 7.5-minute quad: 0. New 1963 7.5-minute quad: 0. New 1963 7.5-minute quad: 0. New 1963 7.5-minute quad: 0. Devils Fork 5. STREAM INFORMATION: (depth and width can be approximations) 9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 100 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2-4
S. County: 7. River basin: Savannah 8. Site coordinates (decimal degrees, at lower end of assessment reach): 9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 12. Channel width at top of bank (feet): 13. Is assessment reach a swamp steam? Yes No 14. Feature type: Perennial flow Intermittent flow Tidal Marsh Stream 15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O 16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi²) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Water Supply Watershed (I) III III IV Sessential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Wat Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 10. Channel Water - assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) A Water throughout assessment reach. B No flow, water in pools only. 10. Channel Water - assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or 10. Evidence of Flow Restriction - assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or 10. Evidence of Flow Restriction - assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or 10. Evidence of Flow Restriction - assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or 10. Evidence of Flow Restriction - assessment reach in-stream habitat or
7. River basin: Savannah
STREAM INFORMATION: (depth and width can be approximations) 9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 100 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2-4
9. Site number (show on attached map): Stream 16 10. Length of assessment reach evaluated (feet): 100 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 2-4
12. Channel width at top of bank (feet): 6-12
14. Feature type: Perennial flow Intermittent flow Tidal Marsh Stream STREAM CATEGORY INFORMATION: 15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O 16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi²) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Classified Trout Waters Water Supply Watershed (
STREAM CATEGORY INFORMATION: 15. NC SAM Zone:
15. NC SAM Zone:
16. Estimated geomorphic valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi² for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Section 10 water Scetion 10 water Scetion 10 water NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters/Outstanding Resource Water Supply Waters/Outstanding Resource Water Scetion 10 word property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) No flow, water in pools only. C No water in assessment reach. B No flow water in assessment reach. B No flow Restriction – assessment reach metric A Least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi² for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Syes No If Yes, check all that apply to the assessment area. Section 10 water Supply Watershed (III III IV Sessential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Water Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish Salos(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) A Water throughout assessment reach. B No flow, water in pools only. C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi² for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Syes No If Yes, check all that apply to the assessment area. Section 10 water Supply Watershed (III III IV Sessential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Water Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish Salos(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) A Water throughout assessment reach. B No flow, water in pools only. C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip Size 1 (< 0.1 mi²) Size 2 (0.1 to < 0.5 mi²) Size 3 (0.5 to < 5 mi²) Size 4 (≥ 5 mi² for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated? Syes No If Yes, check all that apply to the assessment area. Section 10 water Supply Watershed (III III IV Sessential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Water Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish Salos(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) A Water throughout assessment reach. B No flow, water in pools only. C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
Valley shape (skip for Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope) 17. Watershed size: (skip
17. Watershed size: (skip
for Tidal Marsh Stream) ADDITIONAL INFORMATION: 18. Were regulatory considerations evaluated?
18. Were regulatory considerations evaluated?
Section 10 water
Essential Fish Habitat
Publicly owned property NCDWR Riparian buffer rule in effect Nutrient Sensitive Waters Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC) Documented presence of a federal and/or state listed protected species within the assessment area. List species: Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No 1. Channel Water − assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) No flow, water in pools only. C No water in assessment reach. B No flow, water in pools only. C No water in assessment reach metric A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or Or Or Or Or Or Or Or
Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC)
□ Documented presence of a federal and/or state listed protected species within the assessment area. List species: □ Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? □ Yes □ No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) □ A Water throughout assessment reach. □ B No flow, water in pools only. □ C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric □ A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
List species: □Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? □Yes ☑No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) □A Water throughout assessment reach. □B No flow, water in pools only. □C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric □A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
□ Designated Critical Habitat (list species) 19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? □ Yes □ No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) □ A Water throughout assessment reach. □ B No flow, water in pools only. □ C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric □ A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached? ☐Yes ☒No 1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) ☐A Water throughout assessment reach. ☐B No flow, water in pools only. ☐C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric ☐A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
 ☑A Water throughout assessment reach. ☐B No flow, water in pools only. ☐C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric ☐A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
 ☑A Water throughout assessment reach. ☐B No flow, water in pools only. ☐C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric ☐A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
 □ B No flow, water in pools only. □ C No water in assessment reach. 2. Evidence of Flow Restriction – assessment reach metric □ A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
2. Evidence of Flow Restriction – assessment reach metric ☐ A At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or
point of obstructing flow <u>or</u> a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ei
the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, deb beaver dams).
⊠B Not A
3. Feature Pattern – assessment reach metric
☐A A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).
⊠B Not A ′
4. Feature Longitudinal Profile – assessment reach metric
☐A Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damm
widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any
disturbances).
⊠B Not A
 ☑B Not A 5. Signs of Active Instability – assessment reach metric
 Signs of Active Instability – assessment reach metric Consider only current instability, not past events from which the stream has currently recovered. Examples of instability
 Signs of Active Instability – assessment reach metric Consider only current instability, not past events from which the stream has currently recovered. Examples of instability active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-
 Signs of Active Instability – assessment reach metric Consider only current instability, not past events from which the stream has currently recovered. Examples of instability

		ne Lett B	sank (LB) ai	na the Right	t Bank (RB).			
□A ⊠B	∏A ⊠B	Mode refer	erate eviden ence interac	nce of conditi ction (example	ions (examples: les: limited strear	berms, levenside area	ees, down- access, dis	-cutting, aggradation, dredging) that adversely affect sruption of flood flows through streamside area, leaky
□c	□c	Exter [exar of flo- mosc	nsive evider mples: caus od flows thro quito ditchin	nce of conditi seways with fl ough streams ig]) <u>or</u> floodpl	ions that adverse loodplain and cha side area] <u>or</u> too r	ely affect re annel constr nuch floodp	ference int riction, bulk lain/intertion	teraction (little to no floodplain/intertidal zone access wheads, retaining walls, fill, stream incision, disruption dal zone access [examples: impoundments, intensive
Water	Quality	Stressor	rs – assess	ment reach/	/intertidal zone i	metric		
			0 00000	mont rodon,	intertidal zone i			
ΠA								er discoloration, oil sheen, stream foam)
								nd causing a water quality problem
\Box D	Odor	(not inclu	uding natura	ıl sulfide odor	rs)			
□E			hed or colle	ected data in	dicating degrade	d water qu	ality in the	e assessment reach. Cite source in "Notes/Sketch"
□F			access to s	tream or inte	ertidal zone			
□G								
								nowing, destruction, etc)
⊠J				(***)			,	
	ze 1 or 2	streams,	D1 drought	or higher is o	considered a dro	ught; for Siz	e 3 or 4 stu	reams, D2 drought or higher is considered a drought.
⊟В								ast 46 nours
⊠c					3			
						P If Yes, sk	ip to Metric	c 13 (Streamside Area Ground Surface Condition).
Natura								
10a.	∐Yes	⊠No	sedimentat	tion, mining,	, excavation, in-s	tream hard	lening [for	example, rip-rap], recent dredging, and snagging)
						idal ams		5% oysters or other natural hard bottoms Submerged aquatic vegetation
	⊠в	Multiple	sticks and/c			t for T		Low-tide refugia (pools)
				oas (includin	ng lap trees)	neck arsh O		Sand bottom 5% vertical bank along the marsh
	\boxtimes D	5% unde	ercut banks	and/or root r	mats and/or root	s ပဲ≌	□κ	Little or no habitat
				ne normal we	etted perimeter			
		Little of 1	no nabitat					
*****	*****	******	REMAININ	G QUESTIO	NS ARE NOT A	PPLICABLE	FOR TID	AL MARSH STREAMS************************************
		_			• •			·
		_				ed stream?	(skip for C	Coastal Plain streams)
	⊠в	Pool-glid	de section (e	evaluate 11d	i)			
	∐С	Natural b	bedform abs	sent (skip to	Metric 12, Aqua	tic Life)		
;	at least o	ne box i	in each row	(skip for Size	ize 4 Coastal Pla	in streams	and Tidal	I Marsh Streams). Not Present (NP) = absent, Rare
:	should no	t exceed	100% for e	each assessm		()	,	3.1
		R □	C A	A P	Bedrock/sa	nrolite		
	IXI							
	\square				Boulder (25	56 – 4096 n	nm)	
					Cobble (64	- 256 mm)		
					Cobble (64 Gravel (2 –	– 256 mm) 64 mm)		
					Cobble (64 Gravel (2 – Sand (.062 Silt/clay (<	– 256 mm) 64 mm) – 2 mm)		
					Cobble (64 Gravel (2 – Sand (.062	– 256 mm) 64 mm) – 2 mm) 0.062 mm)	, '	
	Consile A B B B B C Check	Consider for the LB RB	Consider for the Left E LB RB A A B B Mode refer or interest of floe Water Quality Stresson Check all that apply. A Discolored wa B Excessive sed C Noticeable evi D Odor (not include E Current publist section. F Livestock with G Excessive algoes and D Other: J Little to no street Recent Weather — water For Size 1 or 2 streams, A Drought condition B Drought condition C No drought c	Consider for the Left Bank (LB) a LB RB A A A Little or no evide B B Moderate evider reference interact or intermittent but Extensive evider [examples: caus of flood flows thre mosquito ditchin interstream divid Water Quality Stressors – assess Check all that apply. A Discolored water in stream B Excessive sedimentation (C Noticeable evidence of po D Odor (not including natura E Current published or colle section. F Livestock with access to s G Excessive algae in stream H Degraded marsh vegetation Other: J Little to no stressors Recent Weather – watershed met For Size 1 or 2 streams, D1 drought A Drought conditions and no B Drought conditions and ra C No drought conditions Large or Dangerous Stream – ass Yes No Is stream is too I Natural In-stream Habitat Types – 10a. Yes No Degraded sedimenta (evaluate 10b. Check all that occur (occurs A Multiple aquatic mac (include liverworts, li B Multiple sticks and/o vegetation C Multiple snags and I D 5% undercut banks in banks extend to the Little or no habitat The Company of the company of the company Include Inclu	Consider for the Left Bank (LB) and the Right LB RB RB A A A Little or no evidence of conditions and no rainfall or respectively and prought conditions and no rainfall or respectively and prought conditions and no rainfall exceed No drought conditions and rainfall exceed No drought conditions and rainfall exceed No drought conditions and no rainfall exceed No drought conditions and rainfall exceed No drought conditions and no rainfall or respectively and the section and prought conditions and rainfall exceed No drought conditions and no rainfall or respectively and the section and the sect	□	Consider for the Left Bank (LB) and the Right Bank (RB). B	Consider for the Left Bank (LB) and the Right Bank (RB). □ RB □ A □ A

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. 🛛	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Adult frogs
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
	Ē		Asian clam (<i>Corbicula</i>)
			Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae
			Dipterans Mayfly larvae (E)
	Ä		Megaloptera (alderfly, fishfly, dobsonfly larvae)
			Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
			Mussels/Clams (not <i>Corbicula</i>) Other fish
		\boxtimes	Salamanders/tadpoles
			Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.	Streams Conside	ide Area	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	LB ⊠A	RB ⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	⊟B □C	⊟в □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
	ПС	ПС	livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	□Y ⊠N	∐Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
		II contrib	utors within the assessment reach or within view of and draining to the assessment reach.
	□в	Ponds (i	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□C □D		ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage)
	□E □F	Stream	ped or bank soil reduced (dig through deposited sediment if present) the above
17.			tors – assessment area metric (skip for Tidal Marsh Streams)
	Check a □A		ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□В	Obstruc	ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
	□C □D		ream (≥ 24% impervious surface for watershed) ethat the streamside area has been modified resulting in accelerated drainage into the assessment reach
	□E ⊠F		nent reach relocated to valley edge the above
18.	Shading	– asses	sment reach metric (skip for Tidal Marsh Streams)
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C	Degrade	chading is appropriate for stream category (may include gaps associated with natural processes) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB $△$ A
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB
	 □ A □ B □ B □ C □ C □ C □ D /ul>
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	🖾 A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46 \qquad \Box B 46 \text{ to } < 67 \qquad \Box C 67 \text{ to } < 79 \qquad \Box D 79 \text{ to } < 230 \qquad \Box E \geq 230$
Note	es/Sketch:

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessmer	nt 10/18/2023	3
Stream Category	Mb1	Assessor Name/Organizatio	n Paul Brigh	t / HDR
Additional stream in	ssment Form (Y/N) ory considerations (Y/N) formation/supplementary measu e (perennial, intermittent, Tidal I		NO YES NO Intermitter	
	Function Class Rating Sumr	mary	USACE/ All Streams	NCDWR Intermittent
	(1) Hydrology		HIGH	HIGH
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		HIGH	HIGH
	(3) Streamside Ar	rea Attenuation	MEDIUM	MEDIUM
	(4) Floodpla	ain Access	MEDIUM	MEDIUM
	(4) Wooded	d Riparian Buffer	HIGH	HIGH
	(4) Microto	pography	NA	NA
	(3) Stream Stabili	ty	HIGH	HIGH
	(4) Channe	el Stability	HIGH	HIGH
	(4) Sedime	nt Transport	HIGH	HIGH
	(4) Stream	Geomorphology	HIGH	HIGH
	(2) Stream/Intertion	dal Zone Interaction	NA	NA
	(2) Longitudinal Tid	dal Flow	NA	NA
	(2) Tidal Marsh Str	eam Stability	NA	NA
		rsh Channel Stability	NA	NA
	(3) Tidal Ma	rsh Stream Geomorphology	NA	NA
	(1) Water Quality		MEDIUM	MEDIUM
	(2) Baseflow	_	HIGH	HIGH
	(2) Streamside Area Ve	getation	HIGH	HIGH
	(3) Upland Polluta	· —	HIGH	HIGH
	(3) Thermoregula	-	HIGH	HIGH
	(2) Indicators of Stresso	-	NO	NO
	(2) Aquatic Life Toleran		LOW	NA
	(2) Intertidal Zone Filtration		NA	NA
	(1) Habitat		HIGH	HIGH
	(2) In-stream Habitat	_	HIGH	HIGH
	(3) Baseflow	_	HIGH	HIGH
	(3) Substrate	_	HIGH	HIGH
	(3) Stream Stabili	ty	HIGH	HIGH
	(3) In-stream Hab	-	HIGH	HIGH
	(2) Stream-side Habitat		HIGH	HIGH
	(3) Stream-side H	_	HIGH	HIGH
	(3) Thermoregula	_	HIGH	HIGH
	(2) Tidal Marsh In-stream	-	NA	NA
	(3) Flow Restriction	_	NA	NA
	(3) Tidal Marsh Str	_	NA	NA
		rsh Channel Stability	NA	NA
		rsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-	· · · · · · · · · · · · · · · · · · ·	NA	NA
	(2) Intertidal Zone	_	NA	NA NA
	Overell		HOLL	111011

Overall

HIGH

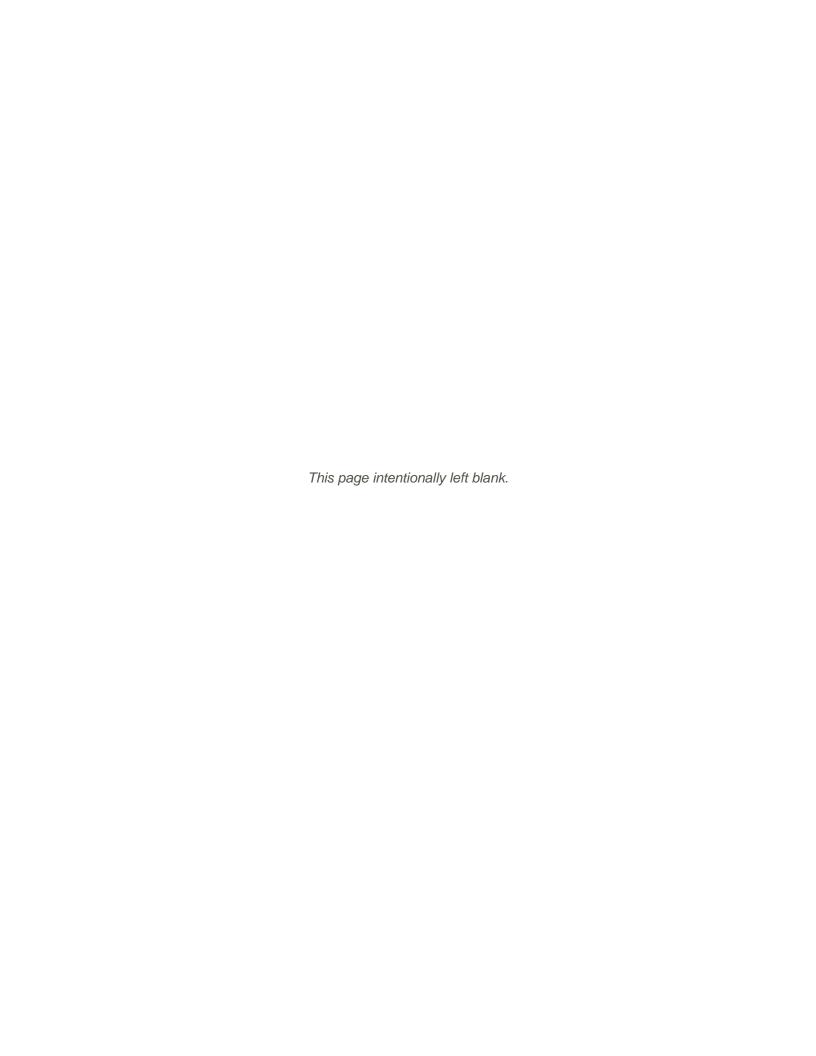
HIGH

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

USACE AID #:			NCDWR #:	
INSTRUCTIONS: Attach a s	ketch of the assessment a	area and photograp	hs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the location of the	stream reach under evalu	uation. If multiple s	tream reaches will be evaluated	on the same property, identify and
number all reaches on the at	tached map, and include a	a separate form for	each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations of requeste	ed information. Record in	the "Notes/Sketch"	' section if supplementary measi	urements were performed. See the
NC SAM User Manual for ex	amples of additional meas	surements that may	be relevant.	
NOTE EVIDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT A	AREA (do not need to be within	n the assessment area).
PROJECT/SITE INFORMAT				
1. Project name (if any):	Bad Creek II Power Co		. Date of evaluation: 10/19/2	I
3. Applicant/owner name:	Duke Energy		. Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee	6	. Nearest named water body	
7. River basin:	Savannah		on USGS 7.5-minute quad:	Devil's Fork
8. Site coordinates (decimal	=	•	34.993745, -82.993409	
STREAM INFORMATION: (weath of accompany would available	atod (fact): 150
9. Site number (show on atta			ngth of assessment reach evalu	
11. Channel depth from bed		· · · · · —		Inable to assess channel depth.
12. Channel width at top of b 14. Feature type: ⊠Perenn			sessment reach a swamp steam	Pres □NO
STREAM CATEGORY INFO			ieani	
15. NC SAM Zone:	Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
13. NO SAW ZONE.	⊠ Mountains (M)		Inner Coastair Iain (I)	Utter Coastai Flaii (O)
<u>, </u>	V			
16. Estimated geomorphic		$\overline{}$	⊠B	
valley shape (skip for Tidal Marsh Stream):	(more sinuous strear	m flatter vallev slor	ne) (less sinuous st	eam, steeper valley slope)
'	☐Size 1 (< 0.1 mi²)		,	· · · · · · · /
17. Watershed size: (skip for Tidal Marsh Stream		□3i2e 2 (0.1 to	< 0.5 IIII-)	
ADDITIONAL INFORMATIO				
		s ∏No If Yes. che	ck all that apply to the assessme	ent area.
☐Section 10 water	☐Classified T			shed (□I □II □III □IV □V)
□Essential Fish Habitat	☐Primary Nur	rsery Area		s/Outstanding Resource Waters
☐Publicly owned proper	ty □NCDWR Rip	parian buffer rule in	effect	aters
☐Anadromous fish	☐303(d) List			onmental Concern (AEC)
	e of a federal and/or state	listed protected spe	ecies within the assessment area	a.
List species:				
☐Designated Critical Ha				
19. Are additional stream info	ormation/supplementary m	neasurements inclu	ded in "Notes/Sketch" section or	attached? ⊠Yes ∐No
1. Channel Water – assess	sment reach metric (skin	o for Size 1 stream	s and Tidal Marsh Streams)	
	ut assessment reach.	o ioi oizo i otioaiii	o and maion outcame,	
☐B No flow, water i				
□C No water in ass	essment reach.			
2. Evidence of Flow Restr	iction – assessment read	ch metric		
			-pool sequence is severely affe	cted by a flow restriction or fill to the
				impoundment on flood or ebb within
the assessment	reach (examples: unders	sized or perched cu	liverts, causeways that constrict	the channel, tidal gates, debris jams,
beaver dams).				
☐B Not A				
3. Feature Pattern – asses	sment reach metric			
	e assessment reach has a	altered pattern (exa	mples: straightening, modification	n above or below culvert).
⊠B Not A				
4. Feature Longitudinal Pr	ofile – assessment reac	h metric		
			eam profile (examples: channel	down-cutting, existing damming, over
widening, active				has not reformed from any of these
disturbances).				
⊠B Not A				
5. Signs of Active Instabil	ity – assessment reach r	metric		
Consider only current i	nstability, not past ever	nts from which th		red. Examples of instability include
	U (ead-cut), active wid	ening, and artificia l hardening (รเ	uch as concrete, gabion, rip-rap).
⊠A < 10% of chann				
☐B 10 to 25% of ch				

6.					streamsio					
	Cons LB	ider for t RB	he Left	Bank (LE	3) and the	Right Ba	ink (RB).			
	□A ⊠B	∏A ⊠B	Мо	derate ev	idence of o	conditions		rms, leve	es, down-	cutting, aggradation, dredging) that adversely affect
	□с	□c	or i	ntermitter	nt bulkhead	ls, causev	ways with floodp	lain const	riction, mi	ruption of flood flows through streamside area, leaky inor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access
			of f mo	lood flows	through st ching]) <u>or</u> f	reamside	area] <u>or</u> too mud	ch floodpla	ain/intertic	cheads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.	Wato	r Quality				each/inte	ertidal zone met	tric		
		k all that		013 — a33	essillelli i	cacimine	sitidal zone me	uic		
	ΠA									er discoloration, oil sheen, stream foam)
	□B □C						m features or intess entering the a			nd causing a water quality problem
	\Box D	Odor	(not inc	cluding na	tural sulfide	e odors)	_		_	
	□E	Curre		ished or d	collected d	ata indica	ating degraded v	water qua	ility in the	assessment reach. Cite source in "Notes/Sketch"
	□F	Lives	tock wit		to stream o					
	□G □H				eam or inte tation in th			. burnina.	regular m	nowing, destruction, etc)
	□J	Othe	r:				n in "Notes/Sketo			
8.					matria (ski	in for Tid	lal Marsh Strear	ne)		
0.	For S	ize 1 or 2	streams	s, D1 drou	ught or high	ner is cons	sidered a drough	nt; for Size		reams, D2 drought or higher is considered a drought.
	□A □B		_				all not exceeding 1 inch within the			est 48 hours
	⊠c			conditions	<u>a</u> rannan cz	Koccurring	1 mon within the	last 40 m	ouis	
9.	Large □Ye		-		assessme oo large or			f Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.							each metric	<i>.</i>		
	10a.	∐Yes	⊠No	sedime	entation, m	nining, ex		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macropnyt ts, lichens,		quatic mosses ıl mats)	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		□в			nd/or leaf	packs and	d/or emergent	k for J h Stre Only	□ □	Low-tide refugia (pools) Sand bottom
		⊠c	vegeta Multiple		nd logs (in	cluding la	ıp trees)	heck arsh	∐'j	5% vertical bank along the marsh
		⊠D					s and/or roots d perimeter	ი ≥	□ĸ	Little or no habitat
		□E		r no habita		nai wellet	ı perimeter			
****	*****	*****	*****	**RFMAII	NING QUE	STIONS	ARF NOT APPI	ICABI F	FOR TID	AL MARSH STREAMS************************************
										streams and Tidal Marsh Streams)
	11a.	∐Yes	⊠No	Is asses	sment rea	ch in a na	atural sand-bed s	stream? (s	skip for C	coastal Plain streams)
	11b.	_			ck the app		box(es).			
		⊠a ⊠b	Riffle-r	un sectior lide sectio	n (evaluate on (evaluat	e 11c) e 11d\				
		□c					tric 12, Aquatic	Life)		
	11c.									essment reach – whether or not submerged. Check
		(R) = pre	esent bu	ıt <u><</u> 10%,	Common ((C) = > 10	0 <mark>-</mark> 40%, Abundan			Marsh Streams). Not Present (NP) = absent, Rare Predominant (P) = > 70%. Cumulative percentages
		should no	ot excee	ed 100% f C	for each as A	sessment P	t reach.			
			\boxtimes		î	<u> </u>	Bedrock/sapro	olite		
							Boulder (256 - Cobble (64 – 2		m)	
						ä	Gravel (2 – 64			
					R	\Box	Sand (.062 – 2 Silt/clay (< 0.0			
					≝	Ĭ	Detritus			
							Artificial (rip-ra	•		
	11d.	□Yes	⊠No	Are poo	Is filled with	h sedimer	nt? (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. □	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic replies Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
	Ë		Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	R		Damselfly and dragonfly larvae Dipterans
	Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
	H		Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
			Other fish Salamanders/tadpoles
	Ä		Snails Stonefly larvae (P)
	Ë		Tipulid larvae
13.		ide Area	Worms/leeches Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)
	LB	RB	_eft Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□a □B	□a □B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	□с	□с	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B □C	□A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted pe	r for the erimeter o	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma f assessment reach.
	LB □Y	RB □Y	Are wetlands present in the streamside area?
16	⊠N Basefloy	⊠N w Contrib	utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a	II contrib	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach.
	⊠A □B	Ponds (ii	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□c □d		on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	\square A		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		that the streamside area has been modified resulting in accelerated drainage into the assessment reach ent reach relocated to valley edge
	⊠F		he above
18.	_		ment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A □B □C	Stream s Degrade	hading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) hading is gone or largely absent


19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □A □A □A □A □ ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B □B From 50 to < 100 feet wide □C □C □C □C □C From 30 to < 50 feet wide
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB
	☑A Mature forest ☐B ☐B Non-mature woody vegetation or modified vegetation structure ☐C ☐C Herbaceous vegetation with or without a strip of trees < 10 feet wide ☐D ☐D Maintained shrubs ☐E ☐E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A Medium to high stem density B B Low stem density C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB A The total length of buffer breaks is < 25 percent. B B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. BB BB Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. C C C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted
25.	stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation. Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □ A < 46 □ B 46 to < 67 □ C 67 to < 79 □ D 79 to < 230 □ E ≥ 230
Note	es/Sketch:

One ATV access road has been constructed across Stream 17 and has two, 6-inch plastic culverts. Areas of streambank vegetation has been removed near the confluence of Stream 16.

Stream 17

Stream Site Name	Date of Assessment	10/19/23			
Stream Category	Paul Bright / HDR				
Notes of Field Asses	YES				
Presence of regulator	YES				
Additional stream information/supplementary measurements included (Y/N)			YES		
NC SAM feature type	Perennial				

(personnelly		<u>-</u>
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	MEDIUM	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

Attachment E

Attachment E - Riparian Vegetation Survey Plot Data and Photolog

Stream 1 (Limber Pole Creek) – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Ilex opaca	7.6	Rhododendron	9.5
Rhododendron	5.1	Betula lenta	28.3
Rhododendron	7.6	Oxydendrum arboreum	12.7
Acer rubrum	26.7	Acer saccharum	14.0
Rhododendron	3.0	Rhododendron	10.5
Rhododendron	2.5	Liquidambar styraciflua	45.7
Rhododendron	7.6	Betula lenta	18.5
Rhododendron	7.6	Rhododendron	8.8
Rhododendron	5.1	Pinus strobus	94.9
Rhododendron	11.4	Rhododendron	9.8
Rhododendron	12.7	Betula lenta	21.3
Nyssa sylvatica	16.5	Rhododendron	13.6
Liquidambar styraciflua	33.0	Liquidambar styraciflua	21.4
Pinus strobus	42.4	Acer saccharum	10.4
Rhododendron	5.4	Betula lenta	13.1
Rhododendron	10.2	Oxydendrum arboreum	26.3
		Average DBH - trees >10 cm (cm)	24.2
		Average DBH - trees >10 cm (in)	9.5
		Average tree density (No. trees/acre)	405

Stream 1 (Limber Pole Creek) – Downstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Rhododendron	7.0	Rhododendron	7.4
Rhododendron	14.9	Rhododendron	6.9
Sourwood	27.4	Acer rubrum	42.0
Rhododendron	12.0	Acer rubrum	29.9
Rhododendron	3.9	Acer rubrum	30.5
Nyssa sylvatica	13.6	Rhododendron	8.9
Rhododendron	9.5	Rhododendron	8.9
Rhododendron	7.0	Betula papyrifera	48.6
Rhododendron	3.5	Liriodendron tulipifera	43.0
		Rhododendron	8.5
		Rhododendron	17.0
		Rhododendron	14.0
		Average DBH - trees >10 cm (cm)	26.6
		Average DBH - trees >10 cm (in)	10.5
		Average tree density (No. trees/acre)	223

Stream 7 (Howard Creek) – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Carpinus caroliniana	22.0	Fagus grandifolia	17.4
Tsuga canadensis	9.7	Betula lenta	28.3
Liriodendron tulipifera	45.9	Liriodendron tulipifera	27.5
		Rhododendron	7.5
		Rhododendron	9.6
		Rhododendron	6.1
		Carpinus caroliniana	7.0
		Liriodendron tulipifera	43.5
		Acer rubrum	6.4
		Fagus grandifolia	34.1
		Average DBH - trees >10 cm (cm)	31.2
		Average DBH - trees >10 cm (in)	12.3
		Average tree density (No. trees/acre)	142

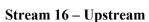
Stream 7 (Howard Creek) – Downstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)	Right Bank (cont.)	DBH (cm)
Tsuga canadensis	3.9	Acer rubrum	21.7	Tsuga canadensis	4
Tsuga canadensis	4.2	Liriodendron tulipifera	42.2	Tsuga canadensis	3
Fagus grandifolia	15.2	Ilex opaca	10.4	Carpinus caroliniana	2.5
Tsuga canadensis	3.5	Tsuga canadensis	7.6	Tsuga canadensis	3.5
Tsuga canadensis	3.5	Tsuga canadensis	2.5	Kalmia latifolia	4.2
Tsuga canadensis	3.5	Tsuga canadensis	4.2	Tsuga canadensis	3.5
Tsuga canadensis	4.1	Tsuga canadensis	4.0	Tsuga canadensis	2.8
Tsuga canadensis	4.0	Tsuga canadensis	3.5	Liquidambar styraciflua	4.5
Tsuga canadensis	3.5	Tsuga canadensis	5.4	Liriodendron tulipifera	20.3
Tsuga canadensis	4.0	Tsuga canadensis	3.5	Liquidambar styraciflua	2.8
Ilex opaca	2.1	Tsuga canadensis	3.5	Liquidambar styraciflua	2.8
Halesia carolina	19.5	Tsuga canadensis	3.5	Tsuga canadensis	8
Rhododendron	7.5	Tsuga canadensis	3.5	Tsuga canadensis	4
		Tsuga canadensis	2.9	Tsuga canadensis	4
		Tsuga canadensis	2.9	Tsuga canadensis	4
		Average DBH - tre	ees >10 cm (cr	n)	21.6
		Average DBH - tre	8.5		
		Average tree densi	121		

Stream 12 – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Liriodendron tulipifera	28.0	Liquidambar styraciflua	76.0
Nyssa sylvatica	3.5	Tsuga canadensis	12.0
Nyssa sylvatica	5.4	Tsuga canadensis	22.0
Liriodendron tulipifera	12.8	Tsuga canadensis	8.0
Acer rubrum	8.9	Nyssa sylvatica	20.5
Carya tomentosa	27.5	Ilex opaca	19.0
Nyssa sylvatica	3.5	Kalmia latifolia	14.0
Liriodendron tulipifera	56.5	Quercus falcata	68.0
		Carya tomentosa	210.0
		Fraxinus pennsylvanica	8.0
		Average DBH - trees >10 cm (cm)	47.2
		Average DBH - trees >10 cm (in)	18.6
		Average tree density (No. trees/acre)	243

Stream 12 – Downstream


Left Bank	DBH (cm)	Right Bank	DBH (cm)
Liriodendron tulipifera	15.1	Liriodendron tulipifera	70.6
Nyssa sylvatica	1.9	Ilex opaca	4.7
Nyssa sylvatica	1.9	Cornus amomum	7.0
Liriodendron tulipifera	45.9	Quercus alba	4.9
Liquidambar styraciflua	12.0	Liriodendron tulipifera	48.4
Liriodendron tulipifera	24.5	Tsuga canadensis	12.4
Liquidambar styraciflua	7.9	Tsuga canadensis	7.3
Acer rubrum	4.4	Acer rubrum	48.0
Liriodendron tulipifera	7.6		
Liquidambar styraciflua	9.8		
Liriodendron tulipifera	34.0		
		Average DBH - trees >10 cm (cm)	37.4
		Average DBH - trees >10 cm (in)	14.7
		Average tree density (No. trees/acre)	162

Stream 15 – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Liriodendron tulipifera	12.2	Quercus montana	29.0
Acer rubrum	3.2	Kalmia latifolia	4.0
		Pinus strobus	21.8
		Nyssa sylvatica	4.5
		Nyssa sylvatica	28.6
		Kalmia latifolia	6.6
		Oxydendrum arboreum	12.4
		Nyssa sylvatica	5.5
		Nyssa sylvatica	3.8
		Average DBH - trees >10 cm (cm)	20.8
		Average DBH - trees >10 cm (in)	8.2
		Average tree density (No. trees/acre)	101

Stream 15 – Downstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Acer rubrum	10.7	Quercus alba	28.3
Kalmia latifolia	6.7	Kalmia latifolia	7.0
Acer rubrum	12.0	Kalmia latifolia	4.7
Oxydendrum arboreum	28.4	Acer rubrum	23.7
Acer rubrum	20.0	Quercus alba	37.2
Quercus montana	31.0	Oxydendrum arboreum	18.0
Kalmia latifolia	5.0	Kalmia latifolia	7.6
		Acer rubrum	9.3
		Acer rubrum	17.5
		Pinus strobus	3.0
		Acer rubrum	7.4
		Quercus alba	41.5
		Average DBH - trees >10 cm (cm)	24.4
		Average DBH - trees >10 cm (in)	9.6
		Average tree density (No. trees/acre)	223

Right Bank	DBH (cm)	Left Bank	DBH (cm)
Acer rubrum	11.1	Liriodendron tulipifera	44.3
Liriodendron tulipifera	15.4	Liriodendron tulipifera	16.9
Liriodendron tulipifera	27.5	Nyssa sylvatica	3.8
Acer rubrum	16.5	Acer rubrum	12.2
Oxydendrum arboreum	12.1	Liriodendron tulipifera	13.3
Acer rubrum	5.6	Liriodendron tulipifera	34.8
Magnolia tripetala	5	Oxydendrum arboreum	6
Quercus alba	46	Liriodendron tulipifera	12.4
Pinus strobus	1	Robinia pseudoacacia	21.4
Kalmia latifolia	5.6		
		Average DBH - trees >10 cm (cm)	21.8
		Average DBH - trees >10 cm (in)	8.6
		Average tree density (No. trees/acre)	263

Stream 16 – Downstream

Right Bank	DBH (cm)	Left Bank	DBH (cm)
Acer rubrum	55	Fagus grandifolia	2.1
Tilia americana	11.6	Liriodendron tulipifera	19.4
		Liriodendron tulipifera	25.5
		Liriodendron tulipifera	15
		Liriodendron tulipifera	19
		Oxydendrum arboreum	4.6
		Liriodendron tulipifera	6.8
		Oxydendrum arboreum	7.5
		Oxydendrum arboreum	3.4
		Oxydendrum arboreum	2.2
		Kalmia latifolia	4
		Liriodendron tulipifera	37
		Average DBH - trees >10 cm (cm)	26.1
		Average DBH - trees >10 cm (in)	10.3
		Average tree density (No. trees/acre)	142

Stream 17 (Devils Fork) – Upstream

Right Bank	DBH (cm)	Left Bank	DBH (cm)
Liriodendron tulipifera	44.3	Nyssa sylvatica	21.3
Liriodendron tulipifera	16.9	Quercus alba	53.1
Nyssa sylvatica	3.8	Kalmia latifolia	3.5
Acer rubrum	12.2	Acer rubrum	13.4
Liriodendron tulipifera	13.3	Oxydendrum arboreum	3
Liriodendron tulipifera	34.8	Liriodendron tulipifera	3.3
Oxydendrum arboreum	6	Asimina triloba	3.3
Liriodendron tulipifera	12.4	Kalmia latifolia	2.4
Robinia pseudoacacia	21.4	Kalmia latifolia	4
		Asimina triloba	2.5
		Average DBH - trees >10 cm (cm)	24.3
		Average DBH - trees >10 cm (in)	9.6
		Average tree density (No. trees/acre)	202

Stream 17 (Devils Fork) – Downstream

Right Bank	DBH (cm)	Left Bank	DBH (cm)
Fagus grandifolia	2.1	Robinia pseudoacacia	48
Liriodendron tulipifera	19.4	Ilex opaca	32
Liriodendron tulipifera	25.5	Nyssa sylvatica	4
Liriodendron tulipifera	15	Cornus florida	9.6
Liriodendron tulipifera	19	Ilex opaca	6.2
Oxydendrum arboreum	4.6	Liriodendron tulipifera	32
Liriodendron tulipifera	6.8	Ilex opaca	11.2
Oxydendrum arboreum	7.5	Liriodendron tulipifera	34
Oxydendrum arboreum	3.4	Acer rubrum	5
Oxydendrum arboreum	2.2	Fagus grandifolia	2.5
Kalmia latifolia	4	Fagus grandifolia	3.4
Liriodendron tulipifera	37	Liriodendron tulipifera	28.2
		Liriodendron tulipifera	27.5
		Liriodendron tulipifera	32
		Rhododendron	4
		Rhododendron	4.5
		Rhododendron	7.5
		Rhododendron	2.4
		Rhododendron	4.7
		Average DBH - trees >10 cm (cm)	27.8
		Average DBH - trees >10 cm (in)	10.9
		Average tree density (No. trees/acre)	263

Photo 1. View of vegetation plot on left bank of upstream reach at Stream 1 (Limber Pole Creek

Photo 2. View of vegetation plot on right bank of upstream reach at Stream 1 (Limber Pole Creek), facing southeast

Photo 3. View of vegetation plot on left bank of downstream reach at Stream 1 (Limber Pole Creek), facing southwest

Photo 4. View of vegetation plot on right bank of downstream reach at Stream 1 (Limber Pole Creek), facing southeast

Photo 5. View of vegetation plot on left bank of upstream reach at Stream 7 (Howard Creek), facing southeast

Photo 6. View of vegetation plot on right bank of upstream reach at Stream 7 (Howard Creek), facing southeast

Photo 7. View of vegetation plot on left bank of downstream reach at Stream 7 (Howard Creek), facing southwest

Photo 8. View of vegetation plot on right bank of downstream reach at Stream 7 (Howard Creek), facing northeast

Photo 9. View of vegetation plot on left bank of upstream reach at Stream 12, facing southeast

Photo 10. View of vegetation plot on right bank of upstream reach at Stream 12, facing northwest

Photo 11. View of vegetation plot on left bank of downstream reach at Stream 12, facing southwest

Photo 12. View of vegetation plot on right bank of downstream reach at Stream 12, facing south

Photo 13. View of vegetation plot on left bank of upstream reach at Stream 15, facing northwest

Photo 14. View of vegetation plot on left bank of upstream reach at Stream 15, facing northwest

Photo 15. View of vegetation plot on left bank of downstream reach at Stream 15, facing west

Photo 16. View of vegetation plot on right bank of upstream reach at Stream 16

Photo 17. View of vegetation plot on right bank of downstream reach at Stream 15, facing southeast

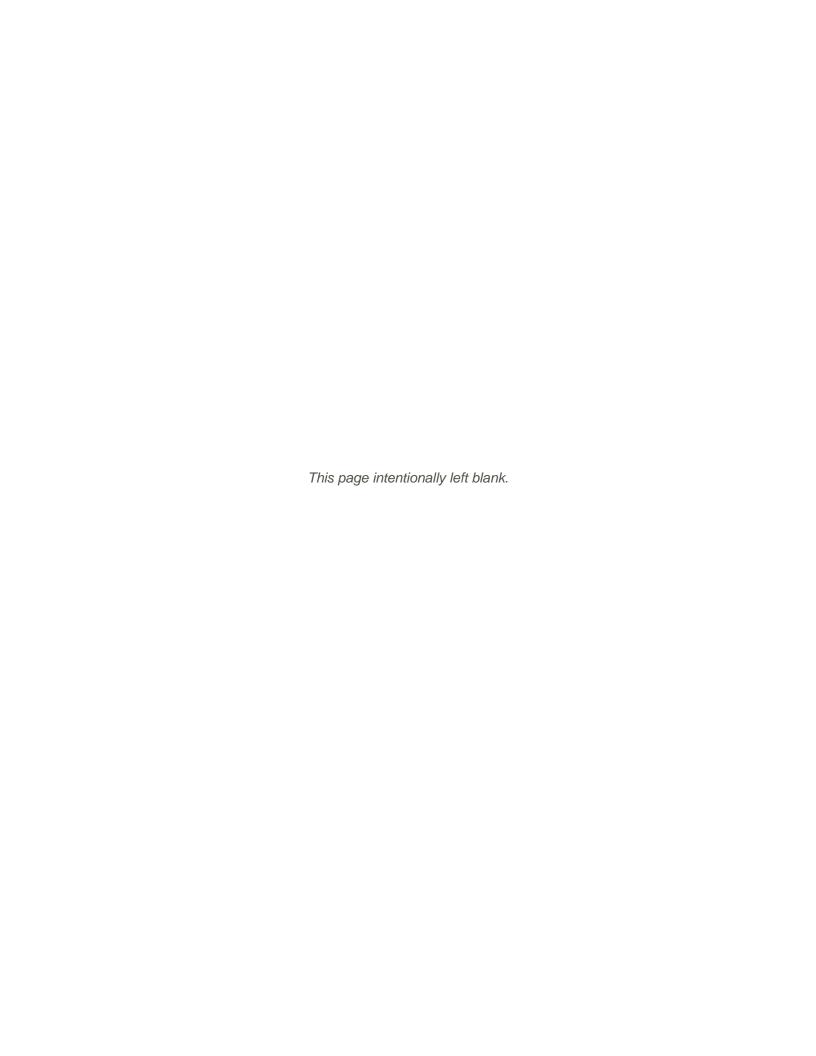
Photo 18. View of vegetation plot on left bank of upstream reach of Stream 16 and right bank of upstream reach of Stream 17 (Devils Fork), facing northeast

Photo 19. View of vegetation plot on left bank of upstream reach of Stream 17 (Devils Fork), facing northwest

Photo 20. View of vegetation plot on left bank of downstream reach of Stream 16 and right bank of downstream reach of Stream 17 (Devils Fork), facing north

Photo 21. View of vegetation plot on left bank of downstream reach of Stream 17 (Devils Fork), facing east

Photo 22. View of vegetation plot on right bank of downstream reach of Stream 16, facing west



Attachment F

Attachment F - Stream

Quantification Tool Rapid

Method Forms

В.

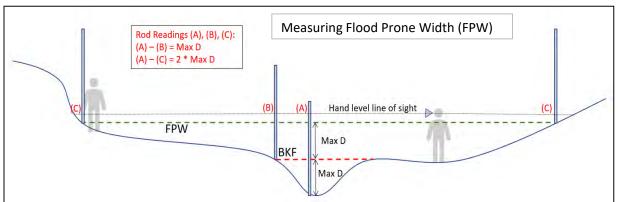
C.

Version 1.0

Reach Information and Stratification

	ct Name:	Bad Creek Pu	•		-			ng Key
Reach		Limber Pole Creek - Upstream 34.991512						p Value
	eam Latitude:			Field	Value			
	eam Longitude:		3.020837					
Down	nstream Latitude:	3	4.99160	4				
Down	nstream Longitude:	-83	3.020533	97				
Ecore	gion:	Е	lue Ridg	e				
River	Basin:	S	Savannah	1				
Strea	m Reach Length (ft):		100					
Valley	/ Туре:		Colluvial					
Drain	age Area (sq. mi.):		1.780579)				
Strah	ler Stream Order:		3					
Flow	Type:	I	Perennia]		
Buffe	r Valley Slope (%):		7.5					
Domi	nant Buffer Land Use:		Forested					
Strea	m Temperature:	(Coldwate	r				
	oinvertebrate Sampling		N/A					
Meth	od:		IN/A					
1	Reach Walk					_		
	Armoreo	Bank Lengths (ft):						
Notes	s: No bank armoring							
Diff	ference between BKF stage		Docer	ibo tho b	ankfull in	dicator		
	and WS (ft)		Desci	ibe the b	ankiun iin	aicatoi		
0.82		Back of deposition	al featur	e				
<u> </u>								
1								

Stream 1 (Limber Pole Creek) -Upstream


Date: 10/2/2023 Investigators: EBS, KC, SP (HDR)

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.				
B.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	Curve Used	hology and lysis South 45, 65, 63			
I.	Flood Prone Width (FPW; ft) 16.08				

Cross Section Measurements Depth measured from bankfull							
Station	Depth	Station	Depth				
0	0	13	1.08				
0.1	0.22	14	0.18				
1	0.5	14.4	0				
2	0.88						
3	0.9						
4.9	1.05						
5.5	1.4						
6	1.52						
7	1.5						
8	1.35						
9	1.28						
10	1						
11	1.12						
12	1.1						

SC SQT Rapid Method Form Version 1.0

Date: 10/2/2023 Investigators: EBS, KC, SP (HDR)

IV. Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	288
A.	At least 20 x the Bankfull Width	100	20"Balikidii Widtii	200

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	3.8	85						
End Station (Distance along tape)	34.9	102.5						
Low Bank Height (ft)	4.15	3.11						
Bankfull Max Depth (ft)	1.52	1.9						
Bankfull Width (ft)	14.4	22.3						
Flood Prone Width (ft)	16.1	66.2						
Bankfull Mean Depth (ft)	1.2	1.2						

C. Pool Data

r ooi Data								
	P1	P2	P3	P4	P5	P6	P7	P8
Geomorphic Pool?	G							
Station At maximum pool depth	43.8							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	1.81							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	103.2	103.2	0.039
Stadia Rod Reading (ft)	1694	1690	4.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	103.2
Valley Length (ft)	93.27
Sinuosity	1.11

Stream 1 (Limber Pole Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Upstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	15
Assessment length (ft)	100
# of LWD Pieces/100 m	49.2

Stream 1 (Limber Pole Creek) -Upstream

SC SQT BEHI/NBS Field Form

Reach ID: Limber Pole Creek - Upstream

Valley Type: **Colluvial**

Bed Material: **D50 = 11.3 mm, medium gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)									
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking	
					75							
25	12	20	1.17	5	/5	75	75	silt- N/A	N/A	31.65 / High	1.0 / Low	

Version 1.0

Date: 10/2/2023 Investigators: EBS, KC, SP (HDR)

Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project		Shading Key
Reach ID:	Limber Pole Creek - Downstream	1	Desktop Value
Upstream Latitude:	34.991604	1	Field Value
Upstream Longitude:	-83.02053397		
Downstream Latitude:	34.991628	1	
Downstream Longitude:	-83.0200869		
Ecoregion:	Blue Ridge	1	
River Basin:	Savannah	1	
Stream Reach Length (ft):	146	1	
Valley Type:	Colluvial		
Drainage Area (sq. mi.):	1.780579		
Strahler Stream Order:	3		
Flow Type:	Perennial		
Buffer Valley Slope (%):	2.5		
Dominant Buffer Land Use:	Forested		
Stream Temperature:	Coldwater		
Macroinvertebrate Sampling	N/A		
Method:	IWA		

II. **Reach Walk**


A.	Number of concen	trated flow points:								
	Notes: No CFPs									
					ı	ı	1	ı		
B.	Armored	Bank Lengths (ft):								
	Notes: No bank armoring									
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator								
	0.83	bottom of undercut, top of mid-channel depositional bar								

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

Α.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.				
В.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	Curve Used	SCDNR Stream Geomorphology an Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63 (SCDNR 2020)			
I.	Flood Prone Width (FPW; ft) 21.1				

Cross Section Measurements Depth measured from bankfull						
Station	Depth	Station	Depth			
0	0	13	0.64			
0.1	1.3	14	0.54			
1	1.28	15	0.84			
2	1.18	16	0.88			
3	1.28	17	0.84			
4	1.16	18	0.84			
5	0.88	18.2	0			
6	0.62					
7	0.5					
8	0.4					
9	0.4					
10	0.48					
11	0.54					
12	0.54					

SC SQT Rapid Method Form Version 1.0

Date: 10/2/2023

Investigators: EBS, KC, SP (HDR)

IV.

Representative Sub-Reach

Δ	Assessment Segment Length	100	20*Bankfull Width	364
	At least 20 x the Bankfull Width			

В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	107							
End Station (Distance along tape)	146							
Low Bank Height (ft)	4.7							
Bankfull Max Depth (ft)	1.28							
Bankfull Width (ft)	18.2							
Flood Prone Width (ft)	38.0							
Bankfull Mean Depth (ft)	0.8							

C. Pool Data

FOOI Data								
	P1	P2	P3	P4	P5	P6	P7	P8
Geomorphic Pool?		G						
Station At maximum pool depth	24.1	66.6						
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	1.84	2.58						

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	146.83	146.8	0.014
Stadia Rod Reading (ft)	1692	1690	2.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	146.83
Valley Length (ft)	136.04
Sinuosity	1.08

Stream 1 (Limber Pole Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	12
Assessment length (ft)	146.83
# of LWD Pieces/100 m	26.8

Stream 1 (Limber Pole Creek) -Downstream

SC SQT BEHI/NBS Field Form

Reach ID: Limber Pole Creek - Downstream

Valley Type: **Colluvial**

Bed Material: **D50 = 14.55 mm, medium gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
		Study									
	Bank	Bank	BKF		Root		Surface				
	Length	Height	Height	Root	Density	Bank Angle	Protection	Bank Material	Stratification	BEHI Total/	NBS
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking
All streambank	s stable										
ĺ											

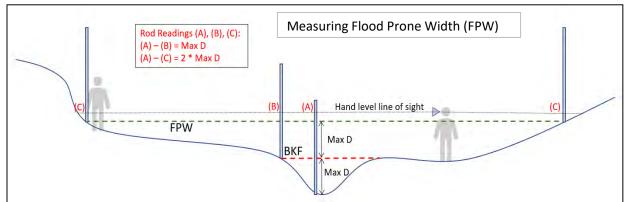
Version 1.0

Date: 10/2/2023

Investigators: EBS, KC, SP (HDR)

Reach Information and Stratification

Reac	.ii iiiioriiiatioi	and Stratification	
Project Name:	Bad Creek Pu	mped Storage Project	Shading Key
Reach ID:	Howard	Creek - Upstream	Desktop Value
Upstream Latitude:	3	34.991168	Field Value
Upstream Longitude:	-8:	3.00275748	
Downstream Latitude:	3	34.991031	
Downstream Longitude:	-8	3.0024676	
Ecoregion:	Е	lue Ridge	
River Basin:		Savannah	
Stream Reach Length (ft):		100	
Valley Type:		Colluvial	
Drainage Area (sq. mi.):		4.13202	
Strahler Stream Order:		2	
Flow Type:		Perennial	
Buffer Valley Slope (%):		6.1	
Dominant Buffer Land Use:		Forested	
Stream Temperature:	(Coldwater	
Macroinvertebrate Sampling		N/A	
Method:		IWA	
Reach Walk			
Number of concer	ntrated flow points:		
Notes: No CFPs			


Armored Bank Lengths (ft): В. Notes: No armored banks Difference between BKF stage and C. Describe the bankfull indicator WS (ft) 0.02 undercut bank, moss lines

Date: 10/2/2023 Stream 7 (Howard Cre Investigators: EBS, KC, SP (HDR) Upstream

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.				
B.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	Curve Used	SCDNR Stream Geomorphology ar Data Colelction and Analysis Soutl Carolina Ecoregions 66, 45, 65, 63 (SCDNR 2020)			
I.	Flood Prone Width (FPW; ft) 20.8				

Cross Section Measurements Depth measured from bankfull						
Station	Depth	Station	Depth			
0	0	13	0.82			
0.1	0.7	14	1			
1	0.71	15	0.7			
2	0.68	16	1.02			
3	0.48	17	1.02			
4	0.4	18	1.02			
5	0.52	19	0.9			
6	0.48	19.2	0			
7	0.1					
8	0.42					
9	0.5					
10	0.88					
11	1.2					
12	0.68					

IV.

Representative Sub-Reach

A. Assessment Segment Length At least 20 x the Bankfull Width	100	20*Bankfull Width	384
---	-----	-------------------	-----

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	1	23.5	46	84.2				
End Station (Distance along tape)	19	31.1	66.5	100				
Low Bank Height (ft)	3.92	3.33	1.83	1.83				
Bankfull Max Depth (ft)	0.62	1.2	1.02	1.46				
Bankfull Width (ft)	12.7	12.1	19.2	17.1				
Flood Prone Width (ft)	13	12.9	20.8	27.8				
Bankfull Mean Depth (ft)	0.8	0.8	0.8	0.8				

C. Pool Data

FUUI Dala								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	23.2	40.5	72					
Geomorphic P-P Spacing (ft)		17.3	31.5					
Pool Depth (ft) Measured from Bankfull	1.18	1.36	1.42					

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	102.95	103.0	0.019
Stadia Rod Reading (ft)	1320	1318	2.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	102.95
Valley Length (ft)	95.14
Sinuosity	1.08

Stream 7 (Howard Creek) - SC SQT Rapid Method Form
Upstream Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

Investigators: EBS, KC, SP (HDR)

Date: 10/2/2023

# of LWD Pieces	6
Assessment length (ft)	100
# of LWD Pieces/100 m	19.7

Stream 7 (Howard Creek) -Upstream

SC SQT BEHI/NBS Field Form

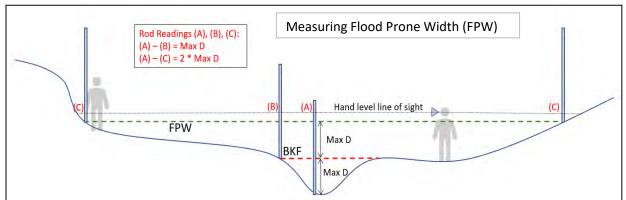
Reach ID: **Howard Creek - Upstream**

Valley Type: **Colluvial**

Bed Material: **D50 = 34.6 mm, very coarse gravel**

		,	, , , , , , , , , , , , , , , , , , ,	Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)							
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment		BEHI Total/ Category	NBS Ranking
12	15	3	0.68	2	60	125	40	NA- silt	NA	33.3 / High	0.52 / Very Low
25	10	3.33	1.2	2.5	50	130	40	NA- silt	NA	32.05 / High	1.0 / Low
30	8	4	1.2	2	40	145	30	NA- silt	NA	37.02 / High	1.0 / Low

Reach Information and Stratification


Upstream Latitude: Upstream Longitude: Upstream Longitude: Downstream Latitude: 34,990804 Downstream Longitude: Ecoregion: Blue Ridge River Basin: Savannah Stream Reach Length (ft): 114 Valley Type: Confined Alluvial Drainage Area (sq. mi.): Eliow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Forested Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No armored banks	ı.	Reaci	n information and Stratification			
Upstream Latitude: Upstream Longitude: Downstream Longitude: Downstream Longitude: Sa.0024676 Downstream Longitude: Sa.00220504 Ecoregion: Blue Ridge River Basin: Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Forested Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Describe the bankfull indicator Describe the bankfull indicator		Project Name:	Bad Creek Pumped Storage Project		Shadir	ng Key
Upstream Longitude: Downstream Latitude: Downstream Longitude: Ecoregion: River Basin: Savannah Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Eline Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Notes: No armored banks Describe the bankfull indicator WS (ft) Downstream Longitude: 34.990804 Blue Ridge River Basin: Savannah Savann	Ī	Reach ID:	Howard Creek - Downstream		Deskto	o Value
Downstream Latitude: Downstream Longitude: Ecoregion: River Basin: Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Difference between BKF stage and WS (ft) Describe the bankfull indicator		Upstream Latitude:	34.991031		Field \	Value
Downstream Longitude: Ecoregion: Blue Ridge River Basin: Savannah Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Difference between BKF stage and WS (ft) Describe the bankfull indicator		Upstream Longitude:	-83.0024676			
Ecoregion: River Basin: Savannah Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks Describe the bankfull indicator		Downstream Latitude:	34.990804			
River Basin: Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Forested Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks Describe the bankfull indicator		Downstream Longitude:	-83.00220504			
River Basin: Stream Reach Length (ft): Valley Type: Confined Alluvial Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks Describe the bankfull indicator	ľ	Ecoregion:	Blue Ridge			
Valley Type: Drainage Area (sq. mi.): Strahler Stream Order: Elow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks Describe the bankfull indicator Describe the bankfull indicator	-		Savannah			
Valley Type: Confined Alluvial Drainage Area (sq. mi.): 4.13202 Strahler Stream Order: 2 Flow Type: Perennial Buffer Valley Slope (%): 6.1 Dominant Buffer Land Use: Forested Stream Temperature: Coldwater Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		Stream Reach Length (ft):	114			
Drainage Area (sq. mi.): Strahler Stream Order: Flow Type: Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks Describe the bankfull indicator WS (ft) Describe the bankfull indicator	P-		Confined Alluvial			
Strahler Stream Order: Flow Type: Perennial Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	li-		4.13202			
Buffer Valley Slope (%): Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	li-	i i	2			
Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		Flow Type:	Perennial			
Dominant Buffer Land Use: Stream Temperature: Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	li-		6.1			
Macroinvertebrate Sampling Method: II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	ľ	Dominant Buffer Land Use:	Forested			
II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	ľ	Stream Temperature:	Coldwater			
II. Reach Walk A. Number of concentrated flow points: Notes: No CFPs B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	ľ	Macroinvertebrate Sampling	NIZA			
A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		Method:	IN/A			
A. Number of concentrated flow points: Notes: No CFPs Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	II. ⁻	Reach Walk	_			
B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		Neuralean af ann ann	turbed flavors into			
B. Armored Bank Lengths (ft): Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	١.	Number of concen	trated flow points:			
Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		Notes: No CFPs				
Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator						
Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator						
Notes: No armored banks C. Difference between BKF stage and WS (ft) Describe the bankfull indicator	, l		15 14 (6)		1	
C. Difference between BKF stage and WS (ft) Describe the bankfull indicator			Bank Lengths (ft):			
WS (ft)		Notes: No armored banks				
WS (ft)						
WS (ft)						
WS (ft)		Difference between BKF stage and	Describe Albert Browleff III in die			
0.48 depositional bench w/veg - top	-•	WS (ft)	Describe the bankfull indic	cator		
		0.48	depositional bench w/veg - top			
	ŀ					
	ŀ					
	}					
	-					
	Ī					
	ļ					

Date: 10/2/2023 Investigators: EBS, KC, SP (HDR) Downstream Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.					
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)					
F.	Regional Curve Bankfull Mean Depth (ft)					
G.	Regional Curve Bankfull Area (sq. ft.)					
H.	Curve Used SCDNR Stream Geomorphology of Data Colelction and Analysis Sou Carolina Ecoregions 66, 45, 65, 6					
I.	Flood Prone Width (FPW; ft) 29.5					

	Cross Section Measurements Depth measured from bankfull									
Station	Depth	Station	Depth							
0	0	14	0.78							
0.1	0.4	15	1.16							
1	0.62	16	1.18							
2	0.78	17	0.88							
3	0.88	18	1.18							
4	0.8	19	1.4							
5	0.58	20	0.86							
6	0.54	21	0.88							
7	1.24	22	0.58							
8	1.28	23	0.36							
10	1.16	24	0.25							
11	0.48	25.2	0							
12	0.52									
13	0.74									

SC SQT Rapid Method Form Version 1.0

IV. **Representative Sub-Reach**

Α	Assessment Segment Length	100	20*Bankfull Width	504
	At least 20 x the Bankfull Width			

* В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	33							
End Station (Distance along tape)	96.5							
Low Bank Height (ft)	2.67							
Bankfull Max Depth (ft)	1.28							
Bankfull Width (ft)	25.2							
Flood Prone Width (ft)	29.5							
Bankfull Mean Depth (ft)	0.9							

C. Pool Data

Pool Data	P1	P2	P3	P4	P5	P6	P7	P8
Geomorphic Pool?								
Station At maximum pool depth	8.7							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	2.64							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	116.7	116.7	0.051
Stadia Rod Reading (ft)	1318	1312	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	116.74
Valley Length (ft)	110.97
Sinuosity	1.05

Stream 7 (Howard Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	15
Assessment length (ft)	114
# of LWD Pieces/100 m	43.2

Stream 7 (Howard Creek) -Downstream

SC SQT BEHI/NBS Field Form

Reach ID: **Howard Creek - Downstream**

Valley Type: **Colluvial**

Bed Material: **D50 = 56.69 mm, very coarse gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
98	8	6	1.3	0	0	85	100	Bedrock	NA	2.69 / Very Low	1.44 / Low

Date: 10/2/2023 Stream 12 - Upstream Investigators: EBS, KC, SP (HDR)

Version 1.0

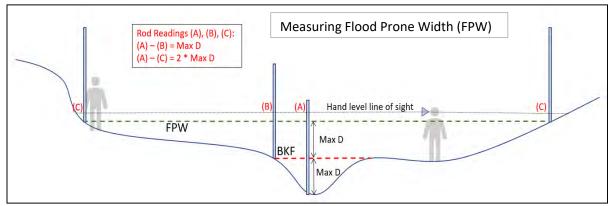
B.

C.

Project Name:	Bad Creek Pu	mped Storage	Project		Shadi	ng Key	
Reach ID:	Stream		Deskto	p Value			
Upstream Latitude:	3	4.995613			Field	Value	
Upstream Longitude:	-8	3.0064477					
Downstream Latitude:	3	4995642					
Downstream Longitude:	-83	3.00094113					
Ecoregion:	В	lue Ridge					
River Basin:	9	Savannah					
Stream Reach Length (ft):		100					
Valley Type:		Colluvial					
Drainage Area (sq. mi.):	(0.031178					
Strahler Stream Order:		1					
Flow Type:	In						
Buffer Valley Slope (%):		15.7					
Dominant Buffer Land Use:		Forested					
Stream Temperature:	C	oldwater					
Macroinvertebrate Sampling		N/A					
Method:		14// (
Reach Walk							
Number of concent	rated flow points:						
Notes: No CFPs	L						
Armored	Bank Lengths (ft):						
Notes: No bank amoring	L			l	I	<u> </u>	
Troces. Tro barne arrioring							

Difference between BKF stage Describe the bankfull indicator and WS (ft) 0.3 No water present. Veg/moss break.

Investigators: EBS, KC, SP (HDR)


Date: 10/2/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage an Average or consensus value from re	0.3					
B.	Bankfull Width (ft)						
E.	Regional Curve Bankfull Width (ft)						
F.	Regional Curve Bankfull Mean De	epth (ft)	0.4048				
G.	Regional Curve Bankfull Area (sq.	-	1.811				
H.	Curve Used Curve Used Carolina Ecoregions 66, 49 (SCDNR 2020)						
1.	Flood Prone Width (FPW; ft) 5.7						

Cross Section Measurements Depth measured from bankfull								
Station	Depth	Station	Depth					
0	0							
0.1	0.42							
1	0.38							
2	0.36							
3	0.28							
4	0.18							
5	0							

Stream 12 - Upstream

Investigators: EBS, KC, SP (HDR)

Date: 10/2/2023

Version 1.0

IV. Representative Sub-Reach

Α	Assessment Segment Length	100	20*Bankfull Width	100
,	At least 20 x the Bankfull Width			100

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	12	32.5	46					
End Station (Distance along tape)	31	42.7	56					
Low Bank Height (ft)	2.9	1.62	1.62					
Bankfull Max Depth (ft)	0.42	0.5	0.68					
Bankfull Width (ft)	5	5.6	4.2					
Flood Prone Width (ft)	5.7	7.8	5.4					
Bankfull Mean Depth (ft)	0.3	0.3	0.3					

C. Pool Data

FUUI Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	10.9	31	44.1					
Geomorphic P-P Spacing (ft)		20.1	13.1					
Pool Depth (ft) Measured from Bankfull	0.9	0.38	0.78					

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	99.88	99.9	0.100
Stadia Rod Reading (ft)	1542	1532	10.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	99.88
Valley Length (ft)	87.71
Sinuosity	1.14

SC SQT Rapid Method Form

Stream 12 - Upstream

Date: 10/2/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	3
Assessment length (ft)	100
# of LWD Pieces/100 m	9.8

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 12 - Upstream

Valley Type: Colluvial

Bed Material: **D50 = 14.29, medium gravel**

Length Height Height Root Density Bank Angle Protection Bank Material Stratification BEHI Total/ Station ID (Ft) (ft) (ft) Depth (ft) (%) (degrees) (%) Adjustment Adjustment Category R	
Station ID (Ft) (ft) (ft) Depth (ft) (%) (degrees) (%) Adjustment Adjustment Category R.	
	NBS
All banks stable	Ranking

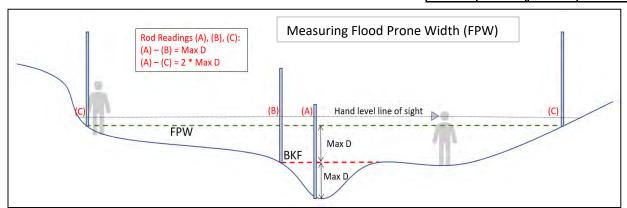
Date: 10/2/2023

Stream 12 - Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

Reac	h Information and Stratification	
Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 12 - Downstream	Desktop Value
Upstream Latitude:	34.995642	Field Value
Upstream Longitude:	-83.00094113	
Downstream Latitude:	34.995534	
Downstream Longitude:	-83.00115561	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.031178	
Strahler Stream Order:	1	
Flow Type:	Intermittent	
Buffer Valley Slope (%):	15.7	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling	NA	
Method:	14/ (
Reach Walk		
Number of concer	itrated flow points:	
Notes: No CFPs		
Notes. No CFFS		

Notes: No CFPs							
		Bank Lengths (ft):					
Notes: No bank ar	noring						
Difference betwee			Descr	ibe the ba	ankfull inc	dicator	
0.75		Back of bench					

Investigators: EBS, KC, SP (HDR)


Date: 10/2/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

Α.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.					
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)					
F.	Regional Curve Bankfull Mean Depth (ft)					
G.	Regional Curve Bankfull Area (sq. ft.)					
H.	Curve Used	SCDNR Stream Geomorp Data Colelction and Ana Carolina Ecoregions 66,	lysis South			
l.	Flood Prone Width (FPW; ft)	9.5				

Cross Section Measurements Depth measured from bankfull							
Station	Depth	Station	Depth				
0	0						
0	0.12						
1	0.16						
2	0.46						
3	0						
3.5	0.38						
4	0.66						
5	0.58						
6	0.68						
7	0.82						
8	0.82						
8.1	0						

Stream 12 - Downstream

Date: 10/2/2023 Version 1.0 Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach IV.

٨	Assessment Segment Length	100	20*Bankfull Width	162
Α.	At least 20 x the Bankfull Width	100	20"Balikidii Widdii	102

* В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	18	30.9	77.6					
End Station (Distance along tape)	28.8	73.5	100					
Low Bank Height (ft)	1.46	3.2	1.85					
Bankfull Max Depth (ft)	0.82	0.8	0.8					
Bankfull Width (ft)	8.1	5.2	8.7					
Flood Prone Width (ft)	9.6	10.5	10.3					
Bankfull Mean Depth (ft)	0.5	0.5	0.5					

C. Pool Data

- FOOI Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	6.5	13	16.8	30.2	76.7			
Geomorphic P-P Spacing (ft)		6.5	3.8					
Pool Depth (ft) Measured from Bankfull	0.56	0.58	0.52	0.7	0.8			

Slope D.

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.7	100.7	0.079
Stadia Rod Reading (ft)	1530	1522	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.69
Valley Length (ft)	75.8
Sinuosity	1.33

Stream 12 - Downstream SC SQT Rapid Method Form

Date: 10/2/2023 Stream 12 - Downstream

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	16			
Assessment length (ft)	100			
# of LWD Pieces/100 m	52.5			

Date: 10/2/2023 Stream 12 - Downstream **SC SQT BEHI/NBS Field Form**

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 12 - Downstream

Valley Type: Colluvial

Bed Material: **D50 = 3.13, very fine gravel**

Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)											
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
20	10	7	0.5	6	60	60	40	silt	NA	25.37 / Moderate	1.6 / Moderate

Date: 10/3/2023

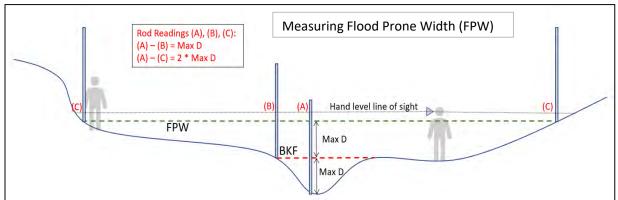
Version 1.0

Reach Information and Stratification

Reach Information and Stratification								
Project Name:	Bad Creek Pumped Storage Project	Shading Key						
Reach ID:	Stream 15 Upstream	Desktop Value						
Upstream Latitude:	34.99311	Field Value						
Upstream Longitude:	-82.99787492							
Downstream Latitude:	34.992924							
Downstream Longitude:	-82.99763355							
Ecoregion:	Blue Ridge							
River Basin:	Savannah							
Stream Reach Length (ft):	100							
Valley Type:	Colluvial							
Drainage Area (sq. mi.):	0.018879							
Strahler Stream Order:	First							
Flow Type:	Perennial							
Buffer Valley Slope (%):	8.1							
Dominant Buffer Land Use:	Forested							
Stream Temperature:	Coldwater							
Macroinvertebrate Sampling	N/A							
Method:	TW/A							
Reach Walk								
Number of concer	ntrated flow points:							
Notes: No CFPs								

II. Reach	W	alk	Ľ
-----------	---	-----	---

111.	Reach Walk	
A.	Number of concen	trated flow points:
	Notes: No CFPs	
B.	Armored	Bank Lengths (ft):
	Notes: No bank amoring	
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator
	0.72	undercut
	0.47	back of depositional bar
	0.31	back of depositional bar


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

Α.	Difference between BKF stage and Average or consensus value from rea	` '	0.5	
В.	Bankfull Width (ft)			
E.	Regional Curve Bankfull Width (ft)			
F.	Regional Curve Bankfull Mean Depth (ft)			
G.	Regional Curve Bankfull Area (sq. ft.)			
Н.	Curve Used	SCDNR Stream Geomorphology an Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63 (SCDNR 2020)		
l.	Flood Prone Width (FPW; ft)	4.3		

	Cross Section Measurements Depth measured from bankfull									
Station	Depth	Station	Depth							
0	0									
0.1	0.54									
1	0.62									
1.5	0.74									
2	0.62									
3	0.42									
3.1	0									

Stream 15 - Upstream

Investigators: EBS, KC, SP (HDR)

Date: 10/3/2023

IV.

Version 1.0

Representative Sub-Reach

	<u>-</u>			
A.	Assessment Segment Length At least 20 x the Bankfull Width	100	20*Bankfull Width	62

В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	27.2	42.3	48.8	65				
End Station (Distance along tape)	33.8	45.6	51	65.5				
Low Bank Height (ft)	1.42	1.32	1.46	1.18				
Bankfull Max Depth (ft)	0.74	0.48	0.58	0.32				
Bankfull Width (ft)	3.1	3.2	5.3	5.3				
Flood Prone Width (ft)	4.3	4.55	5.6	6.7				
Bankfull Mean Depth (ft)	0.6	0.6	0.6	0.6				

C. Pool Data

Pool Data										
	P1	P2	P3	P4	P5	P6	P7	P8		
Geomorphic Pool?	G	G	G	G	G					
Station At maximum pool depth	15.7	38	46.7	54.7	74.7					
Geomorphic P-P Spacing (ft)		22.3	8.7	8.0	20.0					
Pool Depth (ft) Measured from Bankfull	0.86	1.24	0.68	0.72	0.68					

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	101.07	101.1	0.059
Stadia Rod Reading (ft)	1746	1740	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.2
Valley Length (ft)	99.62
Sinuosity	1.01

Stream 15 - Upstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	3
Assessment length (ft)	100
# of LWD Pieces/100 m	9.8

Reach ID: Stream 15 - Upstream

Valley Type: Colluvial

Bed Material: **D50 = 1.36, very coarse sand**

				Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)							
	Bank Length	Study Bank Height	BKF Height	Root	Root Density	Bank Angle	Surface Protection	Bank Material	Stratification		
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	_	(degrees)	(%)	Adjustment	Adjustment	BEHI Total/ Category	NBS Ranking
7	10	4	0.9	4	30	120	20	10 - Fine san	NA	44.12 / Very High	1.43 / Low
50	6	1.5	0.7	1	15	110	20	Silt	NA	35.49 / High	0.97 / Very Low
55	25	1.5	0.7	0.5	10	90	10	10 - Fine san	NA	49.53 / Extreme	1.2 / Low
80	12	2	0.5	0.5	10	45	20	Silt	NA	36.93 / High	1.13 / Low

Date: 10/3/2023 Strea

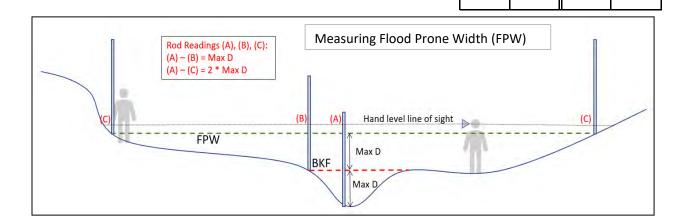
Investigators: EBS, KC, SP (HDR) Version 1.0

Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 15 Downstream	Desktop Value
Upstream Latitude:	34.992924	Field Value
Upstream Longitude:	-82.99763355	
Downstream Latitude:	344.992705	
Downstream Longitude:	-82.997434	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.018879	
Strahler Stream Order:	1	
Flow Type:	Perennial	
Buffer Valley Slope (%):	30.1	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling	N/A	
Method:	IV/A	

II. Reach Walk

Number of concentrated flow points:			
Notes: no CFPs			
Armore	ed Bank Lengths (ft):		
Notes: no bank armoring			
Difference between BKF stage and WS (ft)	Describe the bankfull indicator		
0.58	No great indicators - wide bedrock area, sheet flow		


Stream 15 - Downstream

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.				Cross Section Measuremer Depth measured from bank			
B.	Bankfull Width (ft)		3.2		Station	Depth	Station	Depth
E.	Regional Curve Bankfull Width (ft)		3.6171	'	0	0.44		
F.	Regional Curve Bankfull Mean Depth (ft)				1	0.54		
G.	Regional Curve Bankfull Area (sq. ft.)				2	0.52		
Н.	Curve Used	SCDINR Stream Geomorp Data Colelction and Ana Carolina Ecoregions 66, (SCDNR 2020)	llysis South 45, 65, 63		3	0.7		
l.	Flood Prone Width (FPW; ft)	3.9			3.1	0.7		
					3.2	0		
							il '	

Stream 15 - Downstream

Investigators: EBS, KC, SP (HDR)

Date: 10/3/2023

Version 1.0

Representative Sub-Reach IV.

^	Assessment Segment Length	100	20*Bankfull Width	64
Α.	At least 20 x the Bankfull Width	100	20"Barikidii Widiri	64

* В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	42	55.8						
End Station (Distance along tape)	44	59						
Low Bank Height (ft)	1.12	1.32						
Bankfull Max Depth (ft)	0.22	0.7						
Bankfull Width (ft)	1.4	3.2						
Flood Prone Width (ft)	4.5	3.9						
Bankfull Mean Depth (ft)	0.5	0.5						

C. Pool Data

FOOI Data								
	P1	P2	P3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G	G				
Station At maximum pool depth	23.1	41.2	52.6	60.5				
Geomorphic P-P Spacing (ft)		18.1	11.4	7.9				
Pool Depth (ft) Measured from Bankfull	0.72	0.58	0.92	0.72				

Slope D.

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.2	100.2	0.299
Stadia Rod Reading (ft)	1736	1706	30.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.24
Valley Length (ft)	98.49
Sinuosity	1.02

SC SQT Rapid Method Form

Stream 15 - Downstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	2
Assessment length (ft)	100
# of LWD Pieces/100 m	6.6

SC SQT

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 15 - Downstream

Valley Type: Colluvial Bed Material: **Bedrock**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
	Bank Length	Study Bank	BKF Height	Root	Root Density	Bank Angle	Surface Protection	Bank Material		BEHI Total/	NBS
Station ID	(Ft)	Height (ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking
All banks stable	, no mea	nders									

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

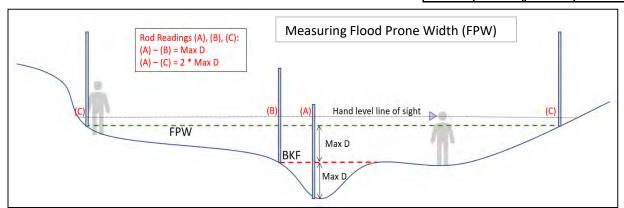
Version 1.0

Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project		Shading Key			
Reach ID:	Stream 16 - Upstream		Desktop Value			
Upstream Latitude:	34.993683		Field Value			
Upstream Longitude:	-82.99403219					
Downstream Latitude:	34.993628					
Downstream Longitude:	-82.99371234					
Ecoregion:	Blue Ridge					
River Basin:	Savannah					
Stream Reach Length (ft):	100					
Valley Type:	Colluvial					
Drainage Area (sq. mi.):	0.019919					
Strahler Stream Order:	First					
Flow Type:	Perennial					
Buffer Valley Slope (%):	8.2					
Dominant Buffer Land Use:	Forested					
Stream Temperature:	Coldwater					
Macroinvertebrate Sampling						
Method:						
Reach Walk						

II.

A.	Number of concen	ntrated flow points:
	Notes: No CFPs	
В.	Armored	d Bank Lengths (ft):
	Notes: No bank amoring	
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator
	0.68	top of depositional bar
	3.25	top of bench
	0.14	top of depositional bar
	0.5	mid depositional bar opposite undercut bank
	0.56	undercut bank


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.			
B.	Bankfull Width (ft)			
E.	Regional Curve Bankfull Width (ft)			
F.	Regional Curve Bankfull Mean Depth (ft)			
G.	Regional Curve Bankfull Area (sq. ft.)			
H.	SCDNR Stream Geomorphology Curve Used Data Colelction and Analysis So Carolina Ecoregions 66, 45, 65,			
l.	Flood Prone Width (FPW; ft)	11.8		

Cross Section Measurements Depth measured from bankfull						
Station	Depth	Station	Depth			
0	0					
0.1	0.38					
1	0.46					
2	0.4					
3	0.68					
4	0.78					
5	0.62					
6	0.4					
7	0.62					
8	0.58					
9	0.64					
10	0.66					
10.5	0					

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR) Stream 16 - Upstream

Version 1.0

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.2	100.2	0.080
Stadia Rod Reading (ft)	1496	1488	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.21
Valley Length (ft)	97.11
Sinuosity	1.03

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	4
Assessment length (ft)	100
# of LWD Pieces/100 m	13.1

Date: 10/3/2023 Stream 16 - Upstream

Investigators: EBS, KC, SP (HDR)

Version 1.0

Representative Sub-Reach

A. Assessment Segment Length
At least 20 x the Bankfull Width

100 20*Bankfull Width 210

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	7	31	37	45.5	56	60	66	88.5
End Station (Distance along tape)	29	34.5	39.5	53.2	58.2	65	85	93
Low Bank Height (ft)	1.96	1.87	1.12	1.48	0.9	0.64	1.42	1.42
Bankfull Max Depth (ft)	0.78	0.32	0.56	0.6	0.24	0.3	0.6	0.6
Bankfull Width (ft)	10.5	3	3.3	4.3	3.9	3.6	4.7	4.9
Flood Prone Width (ft)	11.8	4.5	5.7	6.1	5.3	8	7.6	6.8
Bankfull Mean Depth (ft)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

C. Pool Data

IV.

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10
Geomorphic Pool?	G	G	G	G	G	G	G	G	G	G
Station At maximum pool depth	4	19.7	30	35.3	43	54.4	58.6	65.4	86.8	95
Geomorphic P-P Spacing (ft)		15.7	10.3	5.3	7.7	11.4	4.2	6.8	21.4	8.2
Pool Depth (ft) Measured from Bankfull	0.78	0.66	0.5	0.56	1.08	0.66	0.76	0.44	0.78	0.78

Reach ID: Stream 16 - Upstream

Valley Type: Colluvial

Bed Material: **D50 = 10.2 mm, medium gravel**

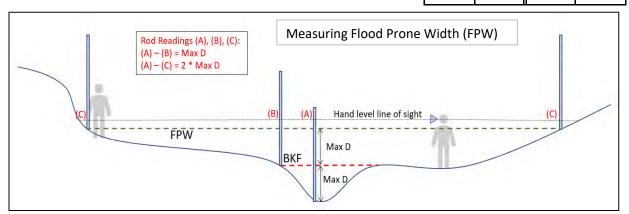
Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)											
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
92	10	1.6	0.6	1	60	145	20	Silt	N/A	34.63 / High	1.56 / Moderate

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

Version 1.0

. Reach Information and Stratification

	ill cal	Lii iiioiiiiatioii ailu Stratiiicatioii		
	Project Name:	Bad Creek Pumped Storage Project		Shading Key
	Reach ID:	Stream 16 - Downstream		Desktop Value
	Upstream Latitude:	34.993628		Field Value
	Upstream Longitude:	-82.99371234		
	Downstream Latitude:	34.993423		
	Downstream Longitude:	-82.99349421		
	Ecoregion:	Blue Ridge		
	River Basin:	Savannah		
	Stream Reach Length (ft):	100		
	Valley Type:	Colluvial		
	Drainage Area (sq. mi.):	0.049116		
	Strahler Stream Order:	First		
	Flow Type:	Perennial		
	Buffer Valley Slope (%):	10.1		
	Dominant Buffer Land Use:	Forested		
	Stream Temperature:	Coldwater		
	Macroinvertebrate Sampling			
	Method:			
II.	Reach Walk			
В.	Armored Notes: No bank amoring	d Bank Lengths (ft):		
C.	Difference between BKF stage and WS (ft)	Describe the bankfull ind	licator	
	0.74	Veg break		
	1.06	undercut bank/eroded		
	0.86	undercut bank/eroded		


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.			
B.	Bankfull Width (ft)			
E.	Regional Curve Bankfull Width (ft)			
F.	Regional Curve Bankfull Mean Depth (ft)			
G.	Regional Curve Bankfull Area (sq. ft.)			
H.	Curve Used	SCDNR Stream Geomorphology and Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63		
I.	Flood Prone Width (FPW; ft)	7.1		

Cross Section Measurements Depth measured from bankfull						
Station	Depth	Station	Depth			
0	0					
0.1	0.3					
1	0.82					
2	0.86					
3	1					
4	1.02					
5	1.02					
6	1					
6.2	0					

Stream 16 - Downstream

Investigators: EBS, KC, SP (HDR)

Date: 10/3/2023

Version 1.0

IV. Representative Sub-Reach

Α	Assessment Segment Length	100	20*Bankfull Width	124
	At least 20 x the Bankfull Width			

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	0	35	41.5	58				
End Station (Distance along tape)	29.2	38	54	83				
Low Bank Height (ft)	1.42	2.2	2.1	2.32				
Bankfull Max Depth (ft)	0.8	0.82	1.02	0.9				
Bankfull Width (ft)	5.8	4.1	6.2	4.9				
Flood Prone Width (ft)	9.6	5.5	7.1	5.8				
Bankfull Mean Depth (ft)	0.9	0.9	0.9	0.9				-

C. Pool Data

POOL Data									
	P1	P2	Р3	P4	P5	P6	P7	P8	
Geomorphic Pool?	G	G	G						
Station At maximum pool depth	31.5	41	56.4						
Geomorphic P-P Spacing (ft)		9.5	15.4						
Pool Depth (ft) Measured from Bankfull	0.8	0.72	1.42						

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	101.7	101.7	0.079
Stadia Rod Reading (ft)	1486	1478	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	101.7
Valley Length (ft)	99.61
Sinuosity	1.02

SC SQT Rapid Method Form

Stream 16 - Downstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR)

Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	2
Assessment length (ft)	100
# of LWD Pieces/100 m	6.6

Reach ID: Stream 16 - Downstream

Valley Type: Colluvial

Bed Material: **D50 = 20.13 mm, coarse gravel**

		-		Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking	
41	20	3	1	2	30	75	30	silt	NA	31.61 / High	1.1 / Low	
46	15	2.5	1	2	50	130	30	silt	NA	32.02 / High	1.1 / Low	
61	12	3.5	1	2.5	50	110	20	silt	NA	34.20 / High	1.0 / Low	
	-											

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

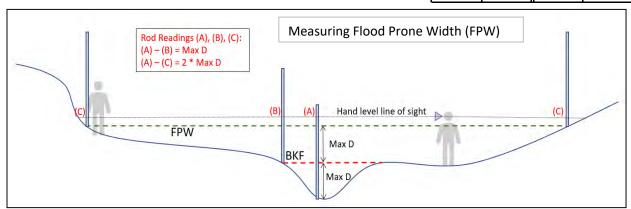
В.

C.

Upstream Version 1.0

Reach Information and Stratification

•	Reacl	h Information and Stratification
	Project Name:	Bad Creek Pumped Storage Project Shading Key
	Reach ID:	Devils Fork - Upstream Desktop Value
	Upstream Latitude:	34.994000 Field Value
	Upstream Longitude:	-82.99362823
	Downstream Latitude:	34.993794
	Downstream Longitude:	-82.99344255
	Ecoregion:	Blue Ridge
	River Basin:	Savannah
	Stream Reach Length (ft):	100
	Valley Type:	Colluvial
	Drainage Area (sq. mi.):	0.049116
	Strahler Stream Order:	Second
	Flow Type:	Perennial
	Buffer Valley Slope (%):	6.4
	Dominant Buffer Land Use:	Forested
	Stream Temperature:	Coldwater
	Macroinvertebrate Sampling	N/A
	Method:	IWA
	Reach Walk	-
	Number of concen	ntrated flow points:
	Notes: No CFPs	L
	Armored	d Bank Lengths (ft):
	Notes: No bank armoring	
	Notes. No bank armorning	
	Difference between BKF stage and	Describe the bankfull indicator
	WS (ft)	
	n 58	undercut


Describe the bankfull indicator
undercut
bench

Date: 10/3/2023 Upstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.				
B.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	Curve Used	SCDNR Stream Geomorphology an Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63 (SCDNR 2020)			
l.	Flood Prone Width (FPW; ft)	6.05			

Cross Section Measurements Depth measured from bankfull									
Station	Depth	Station	Depth						
0	0								
0.1	0.5								
1	0.48								
2	0.48								
3	0.48								
4	0.58								
5	0.38								
5.1	0								

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

IV.

Representative Sub-Reach

٨	Assessment Segment Length	100	20*Bankfull Width	102
A.	At least 20 x the Bankfull Width	100	20" Barikidii Widtii	102

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	4	24.5	95					
End Station (Distance along tape)	23	69	100					
Low Bank Height (ft)	1.24	1.38	2.1					
Bankfull Max Depth (ft)	0.58	0.72	0.46					
Bankfull Width (ft)	5.1	5.6	2.46					
Flood Prone Width (ft)	6.05	6.8	3.2					
Bankfull Mean Depth (ft)	0.5	0.5	0.5					

C. Pool Data

POOLData								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G							
Station At maximum pool depth	3							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	0.32							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	99.7	99.7	0.060
Stadia Rod Reading (ft)	1496	1490	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	99.86
Valley Length (ft)	93.55
Sinuosity	1.07

Stream 17 (Devils Fork) -**SC SQT Rapid Method Form**

Date: 10/3/2023 Upstream Version 1.0 Investigators: EBS, KC, SP (HDR)

LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD) F.

Entire stream reach assessed for LWD

# of LWD Pieces	2
Assessment length (ft)	100
# of LWD Pieces/100 m	6.6

Date: 10/3/2023 Stream 17 (Devils Fork) -Investigators: EBS, KC, SP (HDR)

Upstream

SC SQT **BEHI/NBS Field Form**

Reach ID: **Devils Fork - Upstream**

Valley Type: Colluvial

Bed Material: **D50 = 9.32 mm, medium gravel**

Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)												
	Bank	Study Bank	BKF		Root		Surface					
6 15	Length	Height	Height	Root	Density	Bank Angle	Protection		Stratification	BEHI Total/	NBS	
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking	Notes Outside bend; Bankfull
26	6	3	0.6	2	40	85	40	silt	NA	High	1.44 / Low	Max Depth from Riffle

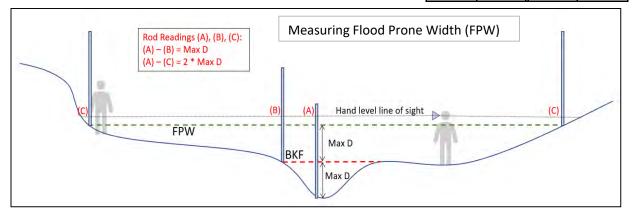
Date: 10/3/2023 Investigators: EBS, KC, SP (HDR) Downstream Version 1.0

Reach Information and Stratification

В.

C.

Reac	h Information and Stratification
Project Name:	Bad Creek Pumped Storage Project Shading Key
Reach ID:	Devils Fork - Downstream Desktop Value
Upstream Latitude:	34.993568 Field Value
Upstream Longitude:	-82.99330012
Downstream Latitude:	34.993794
Downstream Longitude:	-82.99344255
Ecoregion:	Blue Ridge
River Basin:	Savannah
Stream Reach Length (ft):	100
Valley Type:	Colluvial
Drainage Area (sq. mi.):	0.049116
Strahler Stream Order:	Second
Flow Type:	Perennial
Buffer Valley Slope (%):	6.6
Dominant Buffer Land Use:	Forested
Stream Temperature:	Coldwater
Macroinvertebrate Sampling	N/A
Method:	IVA
Reach Walk	
Number of concent	rated flow points:
Notes: No CFPs	<u> </u>
Armored	Bank Lengths (ft):
	Bullik Echiguis (it).
Notes: No bank armoring	
Difference between BKF stage	


Difference between BKF stage and WS (ft)	Describe the bankfull indicator					
0.32	top of depositional bar					
0.28	undercut bank					

Date: 10/3/2023 Downstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.					
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)					
F.	Regional Curve Bankfull Mean Depth (ft)					
G.	Regional Curve Bankfull Area (sq. ft.)					
Н.	Curve Used	SCDNR Stream Geomorphology ar Data Colelction and Analysis Sout Carolina Ecoregions 66, 45, 65, 65 (SCDNR 2020)				
l.	Flood Prone Width (FPW; ft)	8.8				

Cross Section Measurements Depth measured from bankfull									
Station Depth		Station	Depth						
0	0								
0.1	0.3								
1	0.26								
2	0.14								
3	0.08								
4	0.18								
5	0.36								
6	0.3								
7	0.36								
8	0.38								
8.2	0.36								
8.4	0								

I

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

IV.

Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	168
A.	At least 20 x the Bankfull Width	100	20" Balikiuli Wiutii	108

B. Riffle Data *

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	32.5	80.2						
End Station (Distance along tape)	57	100						
Low Bank Height (ft)	2.02	2.04						
Bankfull Max Depth (ft)	0.38	0.52						
Bankfull Width (ft)	8.4	7.8						
Flood Prone Width (ft)	8.8	7.95						
Bankfull Mean Depth (ft)	0.3	0.3						

C. Pool Data

Pool Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?								
Station At maximum pool depth	79							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	0.52							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)	
Station along tape (ft)	0	102	102.0	0.039	
Stadia Rod Reading (ft)	1490	1486	4.0		

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	102			
Valley Length (ft)	87.6			
Sinuosity	1.16			

Date: 10/3/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	8			
Assessment length (ft)	100			
# of LWD Pieces/100 m	26.2			

Date: 10/3/2023 Stream 17 (Devils Fork) -Investigators: EBS, KC, SP (HDR)

Downstream

SC SQT **BEHI/NBS Field Form**

Reach ID: **Devils Fork - Downstream**

Valley Type: Colluvial

Bed Material: **D50 = 0.45 mm, medium sand**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)									
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking	Notes
No unstable ba		(10)	(10)	Верит (те)	(70)	(degrees)	(70)	Adjustment	Adjustificit	category	Kariking	Notes
TVO difficulties	T											

Attachment G

Attachment G - Streams Photolog

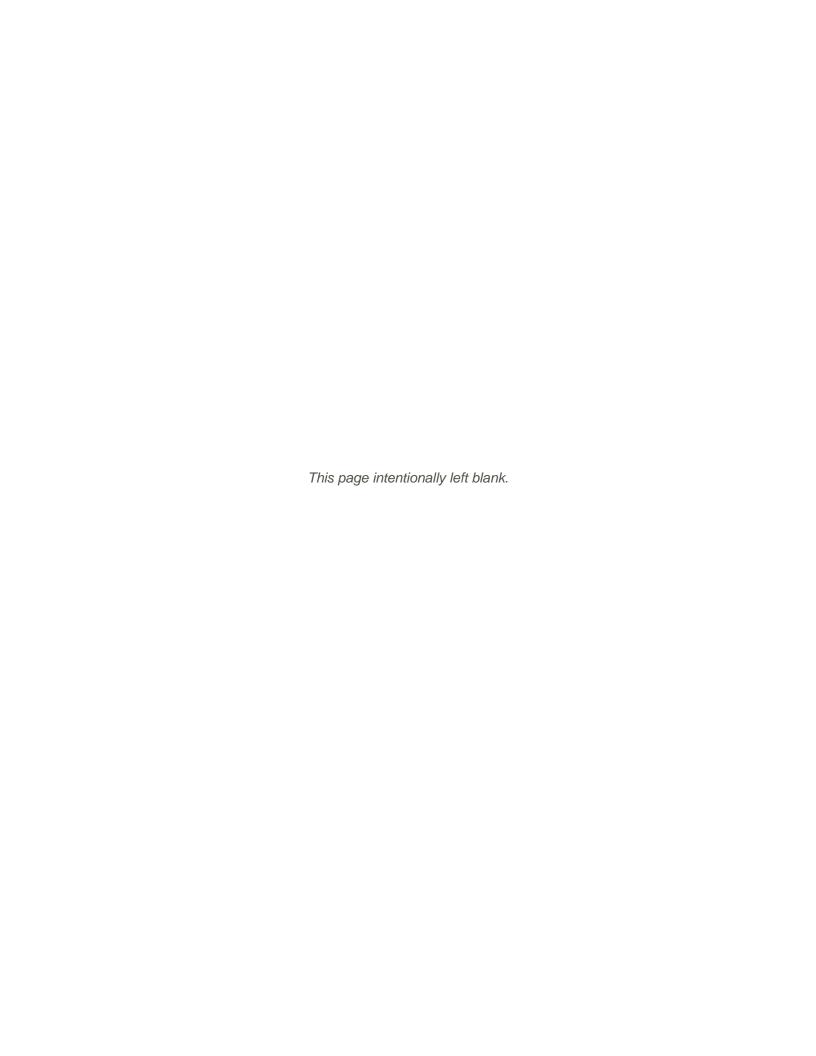


Photo 1. View of Stream 1 (Limber Pole Creek), facing upstream.

Photo 2. View of Stream 1 (Limber Pole Creek), facing downstream.

Photo 3. View of Stream 7 (Howard Creek), facing upstream.

Photo 4. View of Stream 7 (Howard Creek), facing downstream.

Photo 5. View of Stream 12, facing upstream.

Photo 6. View of Stream 12, facing downstream.

Photo 7. View of Stream 15, facing upstream.

Photo 8. View of Stream 15, facing downstream.

Photo 9. View of Stream 15, facing downstream.

Photo 10. View of Stream 16, facing upstream.

Photo 11. View of Stream 16, facing downstream.

Photo 12. View of concentrated flow point on Stream 16, beginning of downstream reach.

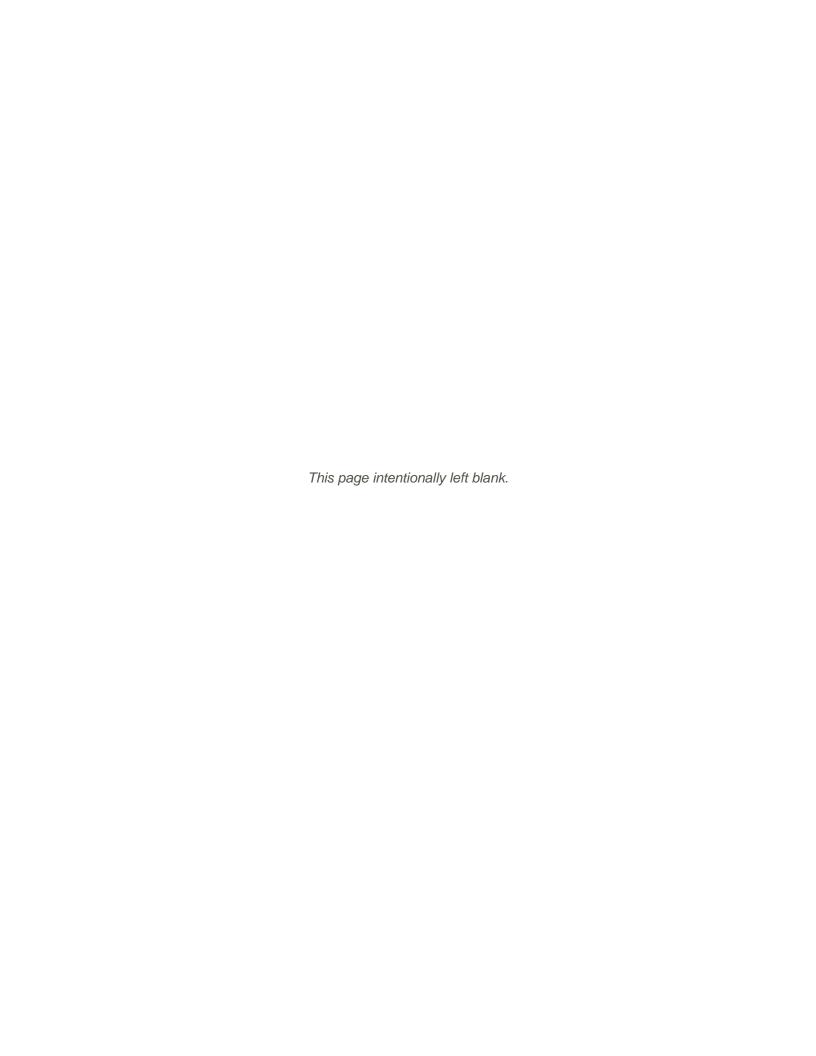


Photo 13. View of Stream 17 (Devils Fork), facing upstream.

Photo 14. View of Stream 17 (Devils Fork), facing downstream.

Attachment H

Attachment H - Fish Community Sampling Data and Photo Vouchers

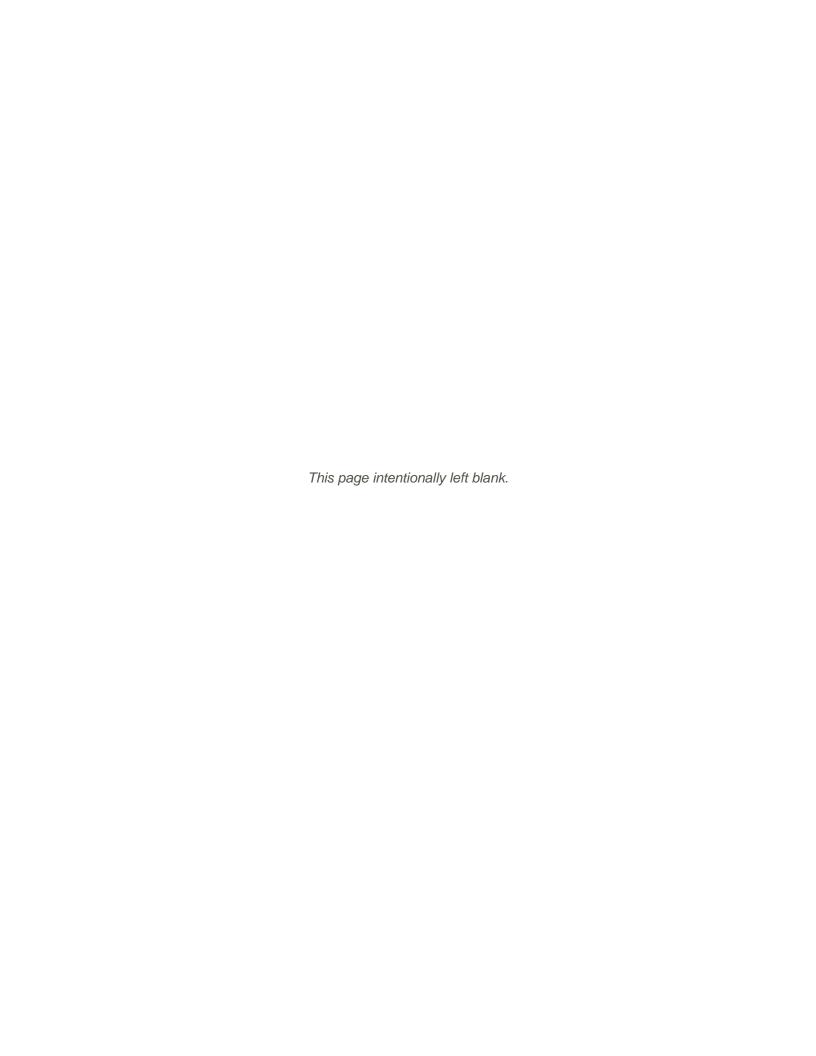


Table 1. Stream reach widths, sample lengths, and shock times for each sampling event.

		•	,	Stream	width	s (m)		Sample	Effort
Stream reach	Sample date	0	25	50	75	100	Mean	length (m)	(s)
Stream 1	7/25/2023	2.9	3.1	2.7	2.7	2.8	2.8	100	721
(Limber Pole Creek) -	9/5/2023	2.9	2.8	3.2	4.1	3.3	3.3	100	829
Upstream	10/9/2023	2.7	2.8	3.3	4.0	2.9	3.1	100	957
Stream 1	7/25/2023	4.0	3.5	4.2	2.7	4.1	3.7	111	1,304
(Limber Pole	9/5/2023	3.7	5.3	4.7	2.6	4.6	4.2	125	1,093
Creek)- Downstream	10/9/2023	3.9	5.0	4.2	2.6	3.8	3.9	117	1,397
Stream 7	7/25/2023	7.1	7.5	5.9	5.1	6.0	6.3	190	2,344
(Howard	9/6/2023	6.9	7.6	5.5	6.2	6.2	6.5	194	3,381
Creek)- Upstream	10/10/2023	6.8	8.1	6.7	5.8	6.1	6.7	201	4,027
Stream 7	7/25/2023	6.5	5.3	8.7	7.4	7.0	7.0	209	2,695
(Howard Creek)	9/6/2023	7.1	6.0	7.4	8.4	5.7	6.9	208	3,581
- Downstream	10/10/2023	5.1	8.6	4.2	5.0	4.6	5.5	165	3,978

Table 2. Water quality parameters for each sampling event.

Stream reach	Sample date	Temperature (°C)	Dissolved oxygen (mg/L)	Specific conductivity (µS/cm)	pH (units)	Salinity (ppt)	Turbidity (NTU)
Stream 1	7/25/2023	19.4	8.6	15	6.6	0.01	7.5
(Limber Pole Creek) -	9/5/2023	20.4	8.4	18	7.0	0.01	4.0
Upstream	10/9/2023	11.6	9.9	16	6.9	0.01	1.1
Stream 1	7/25/2023	19.4	8.6	15	6.6	0.01	7.5
(Limber Pole Creek)-	9/5/2023	20.4	8.4	18	7.0	0.01	4.0
Downstream	10/9/2023	11.6	9.9	16	6.9	0.01	1.1
Stream 7	7/25/2023	18.8	8.9	26	6.9	0.01	2.4
(Howard Creek)-	9/6/2023	19.5	8.7	30	7.3	0.01	3.0
Upstream	10/10/2023	13.0	9.9	27	7.4	0.01	1.6
Stream 7	7/25/2023	18.8	8.9	26	6.9	0.01	2.4
(Howard	9/6/2023	20.8	7.9	28	7.1	0.01	3.0
Creek) - Downstream	10/10/2023	13.9	9.7	21	6.9	0.01	1.6

FDS

Table 3. Fish collected within each stream reaches for each sampling event.

Stream reach	Sample date	Rainbow Trout	Western Blacknose Dace	Salamanders (Desmognathus)
	7/25/2023	0	0	10
Stream 1 (Limber Pole Creek) - Upstream	9/5/2023	0	0	15
Opstream	10/9/2023	0	0	15
	7/25/2023	0	0	9
Stream 1 (Limber Pole Creek)- Downstream	9/5/2023	0	0	8
Downstream	10/9/2023	0	0	5
	7/25/2023	39	108	12
Stream 7 (Howard Creek)- Upstream	9/6/2023	22	97	8
Opsiteam	10/10/2023	40	133	2
	7/25/2023	30	130	5
Stream 7 (Howard Creek) - Downstream	9/6/2023	3	39	10
Downstream	10/10/2023	31	136	3

Table 4. Catch rates and densities of fish each stream reaches for each sampling event.

		Catcl	h rate (No./h	r)	Densi	ty (No./100 r	n)
Stream reach	Sample date	Rainbow Trout	Western Blacknose Dace	Total	Rainbow Trout	Western Blacknose Dace	Total
	7/25/2023	0	0	0	0	0	0
Stream 1 (Limber Pole Creek) - Upstream	9/5/2023	0	0	0	0	0	0
Creek) - Opstream	10/9/2023	0	0	0	0	0	0
	7/25/2023	0	0	0	0	0	0
Stream 1 (Limber Pole Creek)- Downstream	9/5/2023	0	0	0	0	0	0
Creek)- Downstream	10/9/2023	0	0	0	0	0	0
	7/25/2023	59.9	165.9	225.8	20.5	56.8	77.4
Stream 7 (Howard Creek)- Upstream	9/6/2023	23.4	103.3	126.7	11.3	50.0	61.3
Creek)- Opsiream	10/10/2023	35.8	118.9	154.7	19.9	66.2	86.1
G. 5 (II.	7/25/2023	40.1	173.7	213.7	14.4	62.2	76.6
Stream 7 (Howard Creek) - Downstream	9/6/2023	3.0	39.2	42.2	1.4	18.8	20.2
Cicck) - Downsucalli	10/10/2023	28.1	123.1	151.1	18.8	82.4	101.2

Photo 1. Stream 1 (Limber Pole Creek) - Upstream Fish Sampling Location

Photo 2. Stream 1 (Limber Pole Creek) - Downstream Fish Sampling Location

Photo 3. Stream 7 (Howard Creek) - Upstream Fish Sampling Location

Photo 4. Stream 7 (Howard Creek) - Downstream Fish Sampling Location

Photo 5. Rainbow Trout Collected from Stream 7 (Howard Creek)

Photo 6. Western Blacknose Dace Collected from Stream 7 (Howard Creek)

Photo 7. Salamanders collected from Stream 1 (Limber Pole Creek)

Photo 8. Salamanders collected from Stream 7 (Howard Creek)

Attachment I

Attachment I -Macroinvertebrate Sampling Data and Photolog

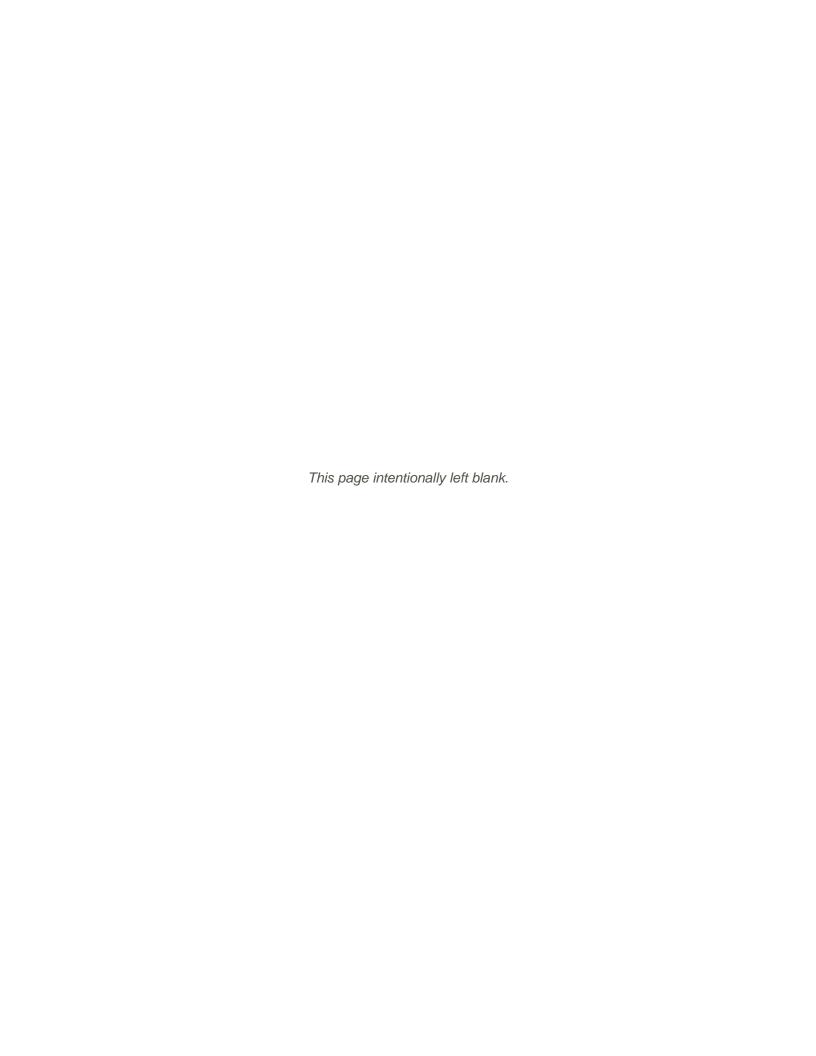


Table 1. Summary of Organisms Collected during Macroinvertebrate Surveys

Taxon	Pollution Tolerance	Functional Feeding	Str	eam 1 Pole Creek)	Stream 7 (Howard Creek)	
Taxon	Value ¹	Group ²	Upstream Downstream		Upstream	Downstream
Annelida						
Class Clitellata						
Subclass Oligochaeta		CG				
Order Lumbriculida						
Lumbriculidae	7	CG			2	
Arthropoda						
Insecta						
Ephemeroptera						
Baetidae		CG				
Acentrella turbida	2	CG	6			2
Baetis flavistriga	6.8	CG	1		44	1
Baetis pluto	3.4		5	1	5	5
Plauditus sp.	5.4	CG		3	7	
Heterocloeon sp.	3.7	SC			2	
Ephemerillidae		CG				
Drunella tuberculata	0	SC	25	14	2	
Ephemerella sp.	2.1	SC	1			
Ephemerella catawba	0			1		
Serratella sp.	1.7	SC	2			
Serratella frisoni				2	7	
Teloganopsis deficiens	2.6	SC	2	1		2
Ephemeridae		CG				
Ephemera sp.	2	CG	1	3		
Heptageniidae		SC		2		21

Taxon	Pollution Tolerance	Functional Feeding		eam 1 Pole Creek)	Stream 7 (Howard Creek)		
- ****	Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream	
Epeorus sp.	Epeorus sp. 1.6 CG		6	2	10	30	
Epeorus dispar	1	CG	13	7			
Epeorus vitreus	1.2	CG			2	2	
Heptagenia sp.	1.9	SC		2			
Heptagenia marginalis gp.	2.2	SC	1			1	
Leucrocuta sp.	2	SC	2	4	2	2	
Stenonema sp.		SC	10	5	37	29	
Stenonema meririvulanum	0.5	SC	3	2	4	5	
Isonychiidae		CG					
Isonychia sp.	3.6	CG	2	8			
Odonata							
Cordulegastridae	5.7	P					
Cordulegaster sp.	5.7	P		1			
Gomphidae					1		
Lanthus sp.	1.6	P		2		3	
Lanthus vernalis	0.8				2		
Plecoptera							
Leuctridae		SH					
Leuctra sp.	1.5	SH	3	3	5	3	
Peltoperlidae		SH					
Peltoperla sp.			6	37		3	
Perlidae		P			3	5	
Acroneuria abnormis	2.1	P	10		1	5	
Eccoptura xanthenes	4.7	P				1	
Paragnetina sp.	1.5	P			5	6	

Taxon	Pollution Tolerance	Functional Feeding	Stream 1 (Limber Pole Creek)			ream 7 rd Creek)
	Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream
Paragnetina immarginata	1.1	P			5	13
Perlesta sp.	2.9	P			1	1
Perlodidae		P			6	
Pteronarcidae	1.6	SH				
Pteronarcys (Allonarcys) sp.	1.8	SH	1	9		3
Pteronarcys dorsata	2.4	SH			1	
Pteronarcys scotti		SH	1	2		
Hemiptera						
Veliidae		P				
Rhagovelia obesa		P		1		
Trichoptera			1			
Glossosomatidae		SC				
Glossosoma sp.	1.4	SC	2			
Glossosoma nigrior		SC			20	14
Goeridae						
Goera calcarata	1				1	
Hydropsychidae		FC				
Cheumatopsyche sp.	6.6	FC			41	5
Diplectrona modesta	2.3	FC	33	30	3	4
Hydropsyche sparna	2.5	FC			18	32
Limnephilidae						
Pycnopsyche sp.	2.5	SH	1			2
Philopotamidae		FC				
Dolophilodes distinctus	0.1	FC	3		1	5
Psychomyiidae		CG				

Taxon	Pollution Tolerance	Functional Feeding		ream 1 Pole Creek)	Stream 7 (Howard Creek)	
	Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream
Lype diversa	3.9	SC			2	
Psychomyia flavida	3	CG			3	
Rhyacophilidae		P				
Rhyacophila carolina	0.4	P	1			
Rhyacophila fuscula	1.6	P			1	4
Uenoidae						
Neophylax mitchelli	0		1	1	1	1
Neophylax oligius	2.4				1	
Coleoptera						
Dryopidae						
Helichus fastigiatus	4.6	SC		1		
Elmidae		CG				
Optioservus sp.	2.1	SC		1		
Optioservus ovalis	2.1	SC			1	
Optioservus tardella	0	SC	4		21	3
Stenelmis sp.	5.6	SC				1
Gyrinidae		P				
Dineutus sp.	5	P	2		1	
Psephenidae		SC				
Ectopria nervosa	4.3	SC				1
Psephenus herricki	2.4	SC	8	14	46	23
Diptera						
Athericidae						
Atherix lantha	1.8	P				1
Ceratopogonidae		P	1			

Taxon	Pollution Tolerance	Functional Feeding		ream 1 Pole Creek)		eam 7 rd Creek)
	Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream
Chironomidae						
Parametriocnemus sp.	3.9	CG				1
Rheotanytarsus sp.	6.5	FC			1	
Rheotanytarsus exiguus gp.	5.9	FC				1
Dixidae		CG				
Dixa sp.	2.5	CG	1			
Limoniidae						
Antocha sp.	4.4	CG			3	
Dicranophragma sp.			1			
Hexatoma sp.	3.5	P	1			
Pediciidae						
Dicranota sp.	0	P		1		1
Simuliidae		FC				
Simulium sp.	4.9	FC				3
Tipulidae		SH				
Tipula sp.	7.5	SH	2	1		1
Total No. of Organisms			163	161	319	246
Total No. of Taxa			35	29	39	39
EPT Index			27	21	30	28
Biotic Index Assigned Values			1.68	2.04	2.98	2.25
EPT Score			3.93	3.19	4.31	4.06
Biotic Index Score			9.04	8.57	7.31	8.29
South Carolina Bioclassification			6.49	5.88	5.81	6.17

¹South Carolina Department of Health and Environmental Control (SCDHEC). 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.

²Functional Feeding Groups: CG = collector-gatherer; FC = filterer-collector; P = predator; SC = scraper; SH = shredder

Photo 1. View of Upstream Reach of Stream 1 (Limber Pole Creek), facing upstream.

Photo 2. View of Downstream Reach of Stream 1 (Limber Pole Creek), facing upstream

Photo 3. View of Upstream Reach of Stream 7 (Howard Creek), facing downstream

Photo 4. View of Downstream Reach of Stream 7 (Howard Creek), facing upstream.

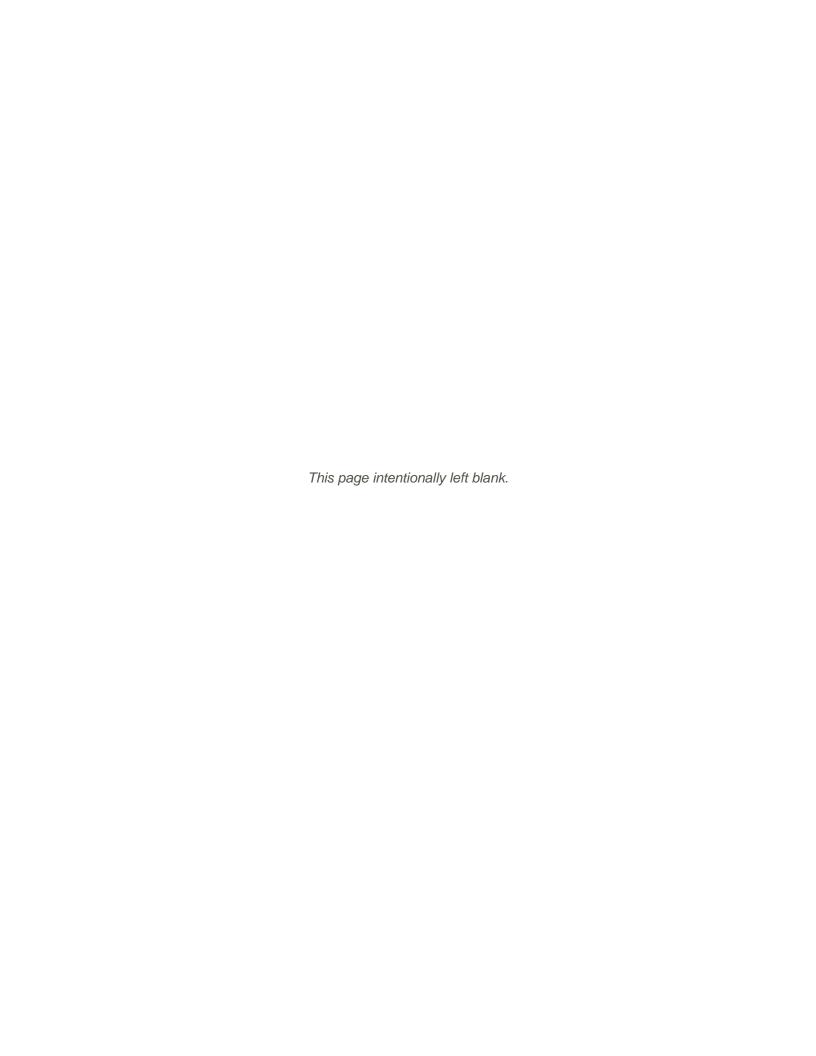
Macroinvertebrate Habitat Assessment

Station L4	oate 8/1/2023	_Time <u>12:00pm</u>	_JarsVials					
Stream Limber Pole Creek	_Location Ups	tream reach	County Oconee County					
Collectors EM, JK, LA Field QC LogbookPage#								
pH (SU) 6.1 DO (mg/L) 8.31 H ₂ O Temp (C°) 19.5 Cond (umhos/cm) 94.9								
Aquatic Habitat Score: Excellent = 5 Good = 4 Good-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0								
*Habitat	Score		Comments					
Root Banks 5	3 2	1 0						
Logs, Sticks, Snags 5	3 2	1 0						
Rock/Gravel Riffle 5	3 2	1 0						
Mature Leaf Pack 5	4 3 2	1 0						
Aquatic Vegetation 5	4 3 2	1 0						
*If aufwuchs and/or sediment on the habita is noted in the comments section; however			roinvertebrates, this impact					
Braided channel: Multiple clear channels w most conditions. "Main"	vith water under	Side channel(s) present but with less flow/water.	2 1 0 Islands or side Not channels only during braided high water.					
Stream detritus % pine needle	s: <u>0</u>	<u>%</u>						
Amount of pine needles in stre	am: 5 more	4 3	2 1 0					
Velocity/Flow:	5	4 3	2 1 0					
Sedimentation: 2 (Moderate) 1 (Severe)								
Species observed but not collected:								

Macroinvertebrate Habitat Assessment

Station L3	_Date8/	1/2023	Time <u>2:15</u>	pm Ja	ars	Via l s		
Stream Limber Pole Cree	k Locatio	n Downs	stream read	ch	_County	Oconee County		
Collectors EM, JK, LA Field QC LogbookPage#								
pH (SU) 6.89 DO (mg/L) 824, 910% H ₂ O Temp (C°) 20.2 Cond (umhos/cm) 92.4								
					_			
Aquatic Habitat Score: Excellent = 5	Good = 4 Go	od-Fair = 3	Fair = 2 Poo	r = 1 Nonexi	istent = 0			
*Habitat	Score			C	omments			
Root Banks 5	4 3	2	1 0					
Logs, Sticks, Snags 5	4 3	2	1 0					
Rock/Gravel Riffle 5	4 3	2	1 0					
Mature Leaf Pack 5	4 3	2	1 0					
Aquatic Vegetation 5	4 3	2	1 0					
*If aufwuchs and/or sediment on the ha is noted in the comments section; how				by macroinve	ertebrates, this	s impact		
Braided channel: Multiple clear channe most conditions. "Ma		to	3 Side chann present but flow/water.		1 Islands or sid channels onl high water.			
Stream detritus % pine need	lles: _	0	<u>%</u>					
Amount of pine needles in s		5 nore	4	3 2	2 1 less			
Velocity/Flow:		5	4	3 2				
Sedimentation: 3 (Little or No) 2 (Moderate) 1 (Severe)								
Species observed but not collected:								

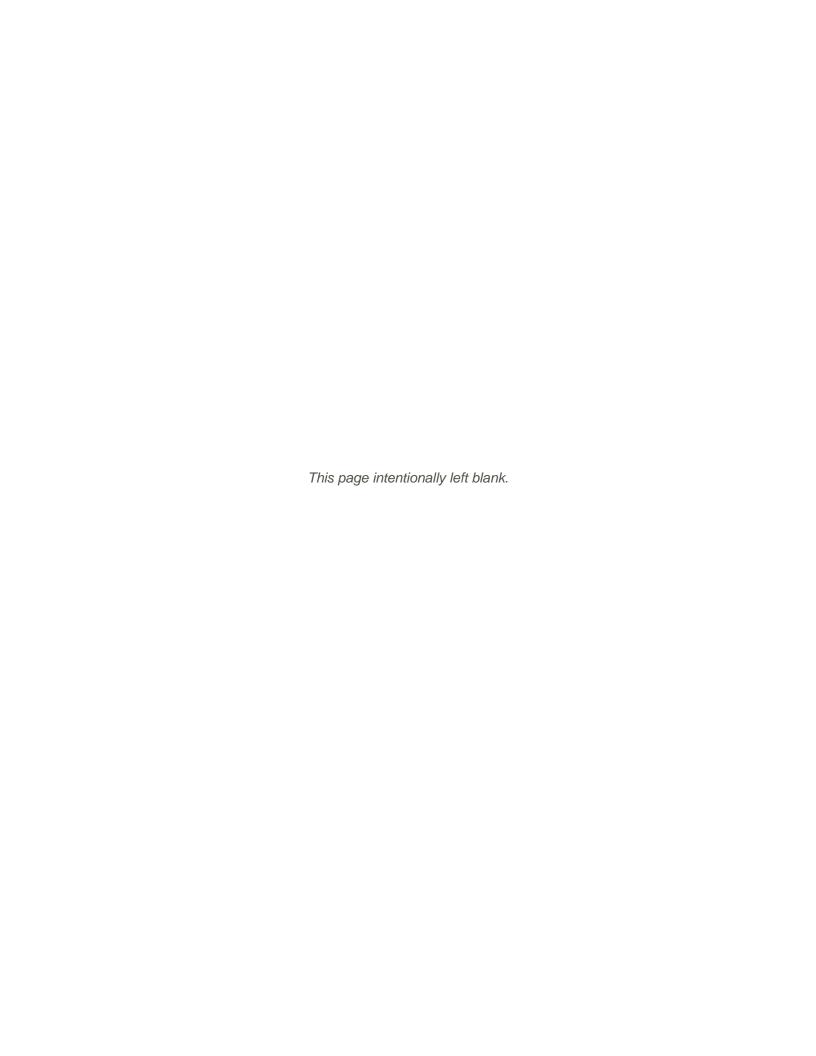
Macroinvertebrate Habitat Assessment


Station H5	_Date _8	3/2/2023	Time	J	ars	Vials			
Stream Howard Creek	Loca	ation Ups	tream Re	ach	County	Oconee County			
Collectors EM, JK, LA Field QC LogbookPage#									
pH (SU) 7.42 DO (mg/L) 8.77, 94.9% H ₂ O Temp (C°) 19.2 Cond (umhos/cm) 99.5									
Aquatic Habitat Score: Excellent = 5 Good = 4 Good-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0									
*Habitat	Scor	·e		C	Comments				
Root Banks 5	4 C	3 2	1 0						
Logs, Sticks, Snags 5	4	3 2	1 0						
Rock/Gravel Riffle 5	4	3 2	1 0						
Mature Leaf Pack 5	4	3 2	1 0						
Aquatic Vegetation 5	4	3 2	1 0						
*If aufwuchs and/or sediment on the his noted in the comments section; how				ion by macroin	vertebrates, this	impact			
Braided channel: Multiple clear channel most conditions. "Ma	els with water in" channe l h		Side cha	out with less	1 Islands or sid channels onl high water.				
Stream detritus % pine need	dles:	0	%						
Amount of pine needles in s	tream:	5 more	4	3	2 1 less	0			
Velocity/Flow:		5	4	3	2 1	0			
Sedimentation: 2 (Moderate) 1 (Severe)									
Species observed but not collected:									

Crayfish and fish

Macroinvertebrate Habitat Assessment

Station H4 Date 8/2/2	.023 Time <u>9:12am</u>	Vials
Stream Howard Creek Location	Downstream reach	County Oconee County
Collectors EM, JK, LA Fig.	eld QC Logbook	Page#
pH (SU) 7.44 DO (mg/L) 8.87, 96	% H₂O Temp (C°) 19.2	Cond (umhos/cm) 100.7
Aquatic Habitat Score: Excellent = 5 Good = 4 Good	d-Fair = 3 Fair = 2 Poor = 1 No	onexistent = 0
*Habitat Score		Comments
Root Banks 5 4 3	2 1 0	
Logs, Sticks, Snags 5 4 3	2 1 0	
Rock/Gravel Riffle 5 4 3	2 1 0	
Mature Leaf Pack 5 4 3	2 1 0	
Aquatic Vegetation 5 4 3	2 1 0	
*If aufwuchs and/or sediment on the habitats appear to a is noted in the comments section; however, the habitat so		oinvertebrates, this impact
Braided channel: 5 Multiple clear channels with water unde most conditions. "Main" channel hard to distinguish	present but with less	2 1 0 Not channels only during braided high water.
Stream detritus % pine needles: 0	%_	_
Amount of pine needles in stream: 5		2 1 0
Velocity/Flow: 5	4 3	2 1 0
Sedimentation: 3 (Little or No)	2 (Moderate) 1 (Se	evere)
Species observed but not collected:		


1 dusky salamander Several crayfish

Attachment J

Attachment J - SQT
Catchment Assessment and
Matrix Summaries

Version 1.1		Notes						
Version Last Updated:	7-Dec-22	1. Users input values that	1. Users input values that are highlighted based on restoration potential					
		2. Users select values fror	2. Users select values from a pull-down menu					
		3. Leave values blank for	field values that were not measur	ed				
		D						
		Programmatic Goals						
Select:		Other						
Expand on the programmatic go								
	•	s current condition by implementing	-					
	•	reek II is pursued and if the propos	•					
		g landscape and watershed exhibit		_				
	he drainage area to Li	mber Pole Creek is classified as for	ested based on the NLCD, with a d	completely	intact ripa	rian		
buffer.								
		Project Description						
Project Name:		•	umped Storage Project					
Project ID:			OC1 Bad Creek Relicensing					
Ecoregion:			Ridge Mountains					
River Basin:			Savannah					
12-digit HUC:		30	0601010104					
	-	Reach Summary						
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF		
Quantification_Tool_US	er Pole Creek - Upsti	Upstream of temp access rd crossi	Single reach upstream to	0.48	0.48			
		Downstroom of town access rd are	Single reach from temporary					
Quantification_Tool_DS	r Pole Creek - Downs	Downstream of temp access rd cro	access road, downstream	0.5	0.5			
						1		

				ries rated as poor were considered in the selection of	
Ove	rall Catchment Condition (select:)	Good	·	ne reach(es): None - stream is in natural condition windrainage area and 97.4% forested.	ith only
	Catanavias	Desc	ription of Catchment Cond	dition	Rating
	Categories	Poor	Fair	Good	(P/F/G)
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	concentrated flow/impairments from adjacent land use or	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May	Rural communities/slow growth potential, or primarily forested.	G
4	Development Activities (e.g. utility rights- of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	or moderate potential for impacts, but none within 1 mile of project	No development or no potential for impacts.	G
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	stream length (project reach and upstream	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	honorial bac 25 m (2012) Moderate anthropogenic caused sediment supply from upstream bank erosion and surface	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	runoff Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/	Project reach is not on the 303(d) list.	G
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile	No NPDES permits within the catchment and none within 1 mile of the project reach.	G
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G

Site Informat	ion and
Reference Curve S	Stratification
Project Name:	Bad Creek Pumped Storage Project
Reach ID:	Limber Pole Creek - Upstream
Restoration Potential:	Partial
Preservation (Y/N):	Yes
Ecoregion:	Blue Ridge Mountains
River Basin:	Savannah
Existing Stream Length (ft):	100
Proposed Stream Length (ft):	
Existing Stream Type:	В
Reference Stream Type:	В
Valley Type:	Colluvial
Drainage Area (sq. mi.):	1.78
Stream Slope (%):	3.9
Strahler Stream Order:	Third
Flow Type:	Perennial
Proposed Bed Material:	
Buffer Valley Slope (%):	5 - 20 %
Dominant Buffer Land Use:	Single Family Residential
Proposed Canopy Cover (%) at project closeout:	
Stream Temperature:	Coldwater
Fish Bioassessment Class:	2 - Upland Savannah

Notes	
1. Users input values that are highlighted	
2. Users select values from a pull-down menu	
3. Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMI	MARY
Existing Condition Score (ECS)	0.48
Proposed Condition Score (PCS)	0.48
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

Explain the restoration potential of this reach based on the programmatic goals and catchment assessment results:

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 97.4 percent of the drainage area to Limber Pole Creek is classified as forested based on the NLCD. Limber Pole Creek is in stable condition with conditions typical of B-type streams.

Explain the goals and objectives for this reach:
The goals for this reach are to preserve its current condition by implementing Best Management Practices and avoidance and minimization measures to the maximum extent practicable if Bad Creek II is pursued and if the proposed temporary acess road is constructed.

Functional		Metric EXISTING CON		ING CONDIT	NDITION ASSESSMENT		PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Weth	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
		Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.3	0.00	0.45	0.64				
Hydraulics		Entrenchment Ratio (ft/ft)	1.8	0.9	0.43					
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.864334	0.83	0.83					
	Large Woody Debris	LWD Index			1.00					
	Large Woody Debris	LWD Piece Count (#/100m)	49.2	1.00	1.00					
		Erosion Rate (ft/yr)				0.74				
	Lateral Migration	Dominant BEHI/NBS	H/L	0.20	0.58					
		Percent Streambank Erosion (%)	6	0.95	0.56					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	1.00						
Geomorphology		Average DBH (in)	9.519488	1.00						
		Tree Density (#/acre)	405	0.50	0.83					
		Native Shrub Density (#/acre)			0.83					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)								
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.6	0.18	0.55					
		Percent Riffle (%)	49	0.92						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
i ilysicochemicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
Biology	Fish	South Carolina Biotic Index								

Version 1.1		Notes				
Version Last Updated:	7-Dec-22	1. Users input values that are	highlighted based on restoration pe	otential		
		2. Users select values from a	pull-down menu			
		3. Leave values blank for field	values that were not measured			
		Programmatic Goal	ls			
Select:		Other				
Expand on the programm	atic goals of this proje	ect:				
The goals for this project	are to preserve the cu	rrent condition of Howard Creek by im	plementing Best Management Prac	tices and	avoidance	and
minimization measures to	the maximum extent	practicable if Bad Creek II is pursued a	nd if the proposed temporary acess	s road is co	onstructed	d. Little
restoration potential exist	ts for this surface wat	er; the surrounding landscape and wate	ershed exhibit little anthropogenic i	influence o	or degrada	ation on
the stream. Only 0.4 percent	ent of the drainage ar	ea to Howard Creek is classified as imp	ervious area based on the 2019 NLC	CD. Both,	upstream	and
downstream reaches exhi	bit a completely intac	t, forested riparian buffer.				
		Project Description	1			
Project Name:		Bad Creek Pum	nped Storage Project			
Project ID:		How	vard Creek			
Ecoregion:		Blue Rid	lge Mountains			
River Basin:		Sa	avannah			
12-digit HUC:		306	01010104			
		Reach Summary				
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF
Quantification_Tool_US	ward Creek - Upstre	Upstream of temporary access road cr	Single reach upstream to access	0.45	0.45	
		Downstream of temporary access road	Single reach from temporary			
Quantification_Tool_DS	ard Creek - Downstr	Downstream of temporary access road	access road, downstream	0.44	0.44	
				I .	1	I

App	licable Reach(es):	Howard Creek Upstream and Downstream	reaches			
Ove	rall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere None - stream is in natural condition with only 0.4% imper		e reach(es)	
			Description of Catchment Condition			
	Categories	Poor	Fair	Good	Rating (P/F/G)	
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G	
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G	
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G	
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G	
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G	
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G	
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G	
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G	
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G	
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G	
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G	
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aqu	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G	
13	Other					

Site Informat	ion and
Reference Curve S	Stratification
Project Name:	Bad Creek Pumped Storage Project
Reach ID:	Howard Creek - Upstream
Restoration Potential:	Partial
Preservation (Y/N):	Yes
Ecoregion:	Blue Ridge Mountains
River Basin:	Savannah
Existing Stream Length (ft):	100
Proposed Stream Length (ft):	
Existing Stream Type: Bc	
Reference Stream Type:	Вс
Valley Type:	Colluvial
Drainage Area (sq. mi.):	4.16
Stream Slope (%):	1.9
Strahler Stream Order:	Second
Flow Type:	Perennial
Proposed Bed Material:	
Buffer Valley Slope (%):	5 - 20 %
Dominant Buffer Land Use:	Single Family Residential
Proposed Canopy Cover (%) at project closeout:	
Stream Temperature:	Coldwater
Fish Bioassessment Class:	2 - Upland Savannah

Notes	
Users input values that are highlighted	
2. Users select values from a pull-down menu	
3. Leave values blank for field values that were not measured	

ИARY
0.45
0.45
0.00
0%
100.0

No restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Only 0.4 percent of the drainage area to Howard Creek is classified as impervious area based on the 2019 NLCD. Howard Creek is in stable condition with conditions typical of B-type streams.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPO	SED CONDI	TION ASSESS	MENT
Category	Function-Based Parameters	Wethe	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient Concentrated Flow Points (#/1000 LF)	55 0	1.00 1.00	1.00	1.00				
Hydraulics F	Floodplain Connectivity	Bank Height Ratio (ft/ft) Entrenchment Ratio (ft/ft)	3.1 1.2	0.00 0.35	0.18	0.53				
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.095508	0.88	0.88					
	Large Woody Debris	LWD Index LWD Piece Count (#/100m)	19.7	0.79	0.79					
	Lateral Migration	Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Streambank Armoring (%)	H/L 16.5	0.20 0.60	0.40					
Geomorphology	Riparian Vegetation	Buffer Width (ft) Average DBH (in) Tree Density (#/acre) Native Shrub Density (#/acre) Native Herbaceous Cover (%) Monoculture Area (%)	300 12.30034 142	1.00 1.00 1.00	1.00	0.73				
	Bed Form Diversity	Pool Spacing Ratio (ft/ft) Pool Depth Ratio (ft/ft) Percent Riffle (%)	1.3 1.7 62	1.00 0.21 0.97	0.73					
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
i nysicochemicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L) Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
DIOIOGY	Fish	South Carolina Biotic Index								

Vancian 4.4		later.								
Version 1.1	7.5. 22	Notes	1:11:1:11							
Version Last Updated:	7-Dec-22		highlighted based on restoration po	otential						
			2. Users select values from a pull-down menu							
		3. Leave values blank for field	values that were not measured							
		Programmatic Goa	ls							
Select:		Other								
Expand on the programma	atic goals of this proje	ect:								
minimization measures to restoration potential exist	the maximum extent s for this surface water	rrent condition of Stream 12 by impler practicable if Bad Creek II is pursued a er; the surrounding landscape and wates classified as forested and only 0.9 per	and if the proposed temporary acess ershed exhibit little anthropogenic i	road is confluence of	onstructed or degrada	d. Little ation on				
		Project Description	n							
Project Name:		Bad Creek Pun	nped Storage Project							
Project ID:		St	ream 12							
Ecoregion:		Blue Ric	dge Mountains							
River Basin:		Sa	avannah							
12-digit HUC:		306	01010104							
		Reach Summary								
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF				
Quantification_Tool_US	tream 12 - Upstrean	Upstream of temporary access road cr	Single reach upstream to access	0.39	0.39					
Quantification_Tool_DS	ream 12 Downstrea	Downstream of temporary access road	Single reach from temporary access road, downstream	0.48	0.48					
						1				
						1				
				_						

Ann	olicable Reach(es):	Stream 12 upstream and downstream							
	erall Catchment Condition (select:)	Describe how any categories rated as poor were considered in the selection of the restoration potential of the Good Overall catchment condition is good. An existing electric transmission ROW is located just east (upstream) of St.							
O. L. L. L.			Description of Catchment Condition						
	Categories	Poor	Fair	Good	Rating (P/F/G)				
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G				
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G				
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G				
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	Р				
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G				
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	F				
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G				
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G				
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G				
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G				
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G				
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G				
13	Other								

Site Informat	ion and
Reference Curve S	Stratification
Project Name:	Bad Creek Pumped Storage Project
Reach ID:	Stream 12 - Upstream
Restoration Potential:	Partial
Preservation (Y/N):	Yes
Ecoregion:	Blue Ridge Mountains
River Basin:	Savannah
Existing Stream Length (ft):	100
Proposed Stream Length (ft):	
Existing Stream Type:	Ва
Reference Stream Type:	Ва
Valley Type:	Colluvial
Drainage Area (sq. mi.):	0.0311178
Stream Slope (%):	10
Strahler Stream Order:	First
Flow Type:	Intermittent
Proposed Bed Material:	
Buffer Valley Slope (%):	21 - 40 %
Dominant Buffer Land Use:	Single Family Residential
Proposed Canopy Cover (%) at project closeout:	
Stream Temperature:	Coldwater
Fish Bioassessment Class:	

	Notes		
Ī	1. Users input values that are highlighted		
	2. Users select values from a pull-down menu		
Ī	3. Leave values blank for field values that were not measured		

/IARY
0.39
0.39
0.00
0%
100.0

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 89.9 percent of the drainage area to Stream 12 is classified as forested based on the NLCD, with only 0.9 percent impervious. Stream 12 is in stable condition with conditions typical of A-type streams.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Wettic	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
Category F lydrology R lydraulics F L liseomorphology R B lydraulics F L liseomorphology R L lydraulics I L liseomorphology R L lydraulics I	Reach Runon	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00	1.00				
Hudraulies	Floodplain Connectivity	Bank Height Ratio (ft/ft)	4.8	0.00	0.18					
Hydraulics	1100dplain connectivity	Entrenchment Ratio (ft/ft)	1.2	0.35	0.10	0.20				
Category Fidelydrology Residualities Fidelydraulities Fidelydr	Flow Dynamics	Width/Depth Ratio State (O/E)	1.621309	0.22	0.22					
	Large Woody Debris	LWD Index			0.43					
	Large Woody Debris	LWD Piece Count (#/100m)	9.8	0.43	0.43					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS								
		Percent Streambank Erosion (%)								
		Percent Streambank Armoring (%)				0.76				
	Riparian Vegetation	Buffer Width (ft)	300	1.00						
Geomorphology		Average DBH (in)	18.5794	1.00						
		Tree Density (#/acre)	243	1.00	1.00					
		Native Shrub Density (#/acre)			1.00					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	3.3	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	2.5	0.80	0.85					
		Percent Riffle (%)	39	0.74						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
i ilysicochemicai	Phosphorus	Total Phosphorus (mg/L)								
Physicochemical	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
biology	Fish	South Carolina Biotic Index								

Version 1.1		Notes				
Version Last Updated:	7-Dec-22	1. Users input values that are	highlighted based on restoration	potential		
		2. Users select values from a	pull-down menu			
		3. Leave values blank for field	values that were not measured			
		Programmatic Goa	ls			
Select:		Other				
Expand on the programm	atic goals of this proje	ect:		,		
		Project Description	n			
Project Name:		Bad Creek Pur	nped Storage Project			
Project ID:		St	ream 15			
Ecoregion:		Blue Ric	lge Mountains			
River Basin:		Si	avannah			
12-digit HUC:		306	01010104			
		Reach Summary				
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF
Quantification_Tool_US		Reach upstream of temporary access	•	0.37	0.37	
Quantification_Tool_DS	ream 15 - Downstrea	Reach downstream of temporary acce	Downstream of access road	0.36	0.36	
						<u> </u>
						1

Арр	licable Reach(es):	Stream 15 upstream and downstream				
Ove	rall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere None were rated as poor. Catchment is in good condition v 5 percent classified as impervious based on the NLCD.			
Categories			Description of Catchment Condition		Rating	
	Categories	Poor	Fair	Good	(P/F/G)	
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G	
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G	
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G	
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G	
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G	
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	F	
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	F	
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G	
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G	
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G	
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G	
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G	
13	Other					

Site Informat	ion and	
Reference Curve S	Stratification	
Project Name:	Bad Creek Pumped Storage Project	
Reach ID:	Stream 15 - Upstream	
Restoration Potential:	Partial	
Preservation (Y/N):	Yes	
Ecoregion:	Blue Ridge Mountains	
River Basin:	Savannah	
Existing Stream Length (ft):	100	
Proposed Stream Length (ft):		
Existing Stream Type:	G	
Reference Stream Type:	В	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.0016884	
Stream Slope (%):	5.9	
Strahler Stream Order:	First	
Flow Type:	Perennial	
Proposed Bed Material:		
Buffer Valley Slope (%):	5 - 20 %	
Dominant Buffer Land Use:	Single Family Residential	
Proposed Canopy Cover (%) at project closeout:		
Stream Temperature:	Coldwater	
Fish Bioassessment Class:	2 - Upland Savannah	

Notes			
Users input values that are highlighted			
2. Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMI	MADV
	1
Existing Condition Score (ECS)	0.37
Proposed Condition Score (PCS)	0.37
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

Some restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 85.6 percent of the drainage area to Stream 15 is classified as forested and 5 percent classified as impervious based on the NLCD. Approximately 26.5 percent of the reach exhibited bank erosion.

Functional	Function-Based Parameters	Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category		Metric	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55.95389925	0.96	0.98	0.98				
Tryurology	Reacti Kulloti	Concentrated Flow Points (#/1000 LF)	0	1.00	0.56	0.50				
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.3	0.00	0.27					
Hydraulics	1 loodplain connectivity	Entrenchment Ratio (ft/ft)	1.3	0.53	0.27	0.37				
Category Fundamental Nitts Category Fundamental Nitts Floor Flor	Flow Dynamics	Width/Depth Ratio State (O/E)	0.578687	0.47	0.47					
	Large Woody Debris	LWD Index			0.43					
	Large Woody Debris	LWD Piece Count (#/100m)	9.8	0.43	0.45					
		Erosion Rate (ft/yr)				0.48				
	Lateral Migration	Dominant BEHI/NBS	Ex/L	0.00	0.21					
	Lateral Wilgration	Percent Streambank Erosion (%)	26.5	0.42	0.21					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	1.00						
Geomorphology		Average DBH (in)	8.188976	0.88						
		Tree Density (#/acre)	102	0.76	0.88					
		Native Shrub Density (#/acre)			0.88					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	4.6	0.82						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.4	0.12	0.40					
		Percent Riffle (%)	13	0.25						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Dhysicoshomical	Nitrogen	Total Nitrogen (mg/L)								
riiysicociieiiiicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
ыоюду	Fish	South Carolina Biotic Index								

Version 1.1		Notes				
Version Last Updated:	7-Dec-22	1. Users input values that are	highlighted based on restoration	potential		
·		2. Users select values from a				
		·	values that were not measured			
		Programmatic Goal	lS I			
Select:		Other				
Expand on the programm	atic goals of this proje	ect:				
		Project Description	ı			
Project Name:		Bad Creek Pun	nped Storage Project			
Project ID:		Stı	ream 16			
Ecoregion:		Blue Rid	ge Mountains			
River Basin:		Sa	avannah			
12-digit HUC:		306	01010104			
		Reach Summary				
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF
Quantification_Tool_US	tream 16 - Upstrear	Upstream of temp access rd crossing	Single reach upstream to	0.45	0.45	
		Downstream of temp access rd crossing	Single reach from temporary			
Quantification_Tool_DS	ream 16 - Downstrea	Downstream of temp access to crossin	access road, downstream	0.37	0.37	
						1

Арр	licable Reach(es):	Stream 16				
Ove	erall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere double HDPE installed at the upper extent of project reach			
				Rating		
	Categories	Poor	Fair	Good	(P/F/G)	
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	P	
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G	
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G	
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	F	
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G	
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G	
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G	
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G	
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G	
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G	
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G	
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aqu	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G	
13	Other					

Site Informat	ion and
Reference Curve S	Stratification
Project Name:	Bad Creek Pumped Storage Project
Reach ID:	Stream 16 - Upstream
Restoration Potential:	Partial
Preservation (Y/N):	Yes
Ecoregion:	Blue Ridge Mountains
River Basin:	Savannah
Existing Stream Length (ft):	100
Proposed Stream Length (ft):	
Existing Stream Type:	Ва
Reference Stream Type:	Ва
Valley Type:	Colluvial
Drainage Area (sq. mi.):	0.017309
Stream Slope (%):	8
Strahler Stream Order:	First
Flow Type:	Intermittent
Proposed Bed Material:	
Buffer Valley Slope (%):	5 - 20 %
Dominant Buffer Land Use:	Single Family Residential
Proposed Canopy Cover (%) at project closeout:	
Stream Temperature:	Coldwater
Fish Bioassessment Class:	

	Notes			
Ī	1. Users input values that are highlighted			
	2. Users select values from a pull-down menu			
Ī	3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUM	MARY
Existing Condition Score (ECS)	0.45
Proposed Condition Score (PCS)	0.45
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

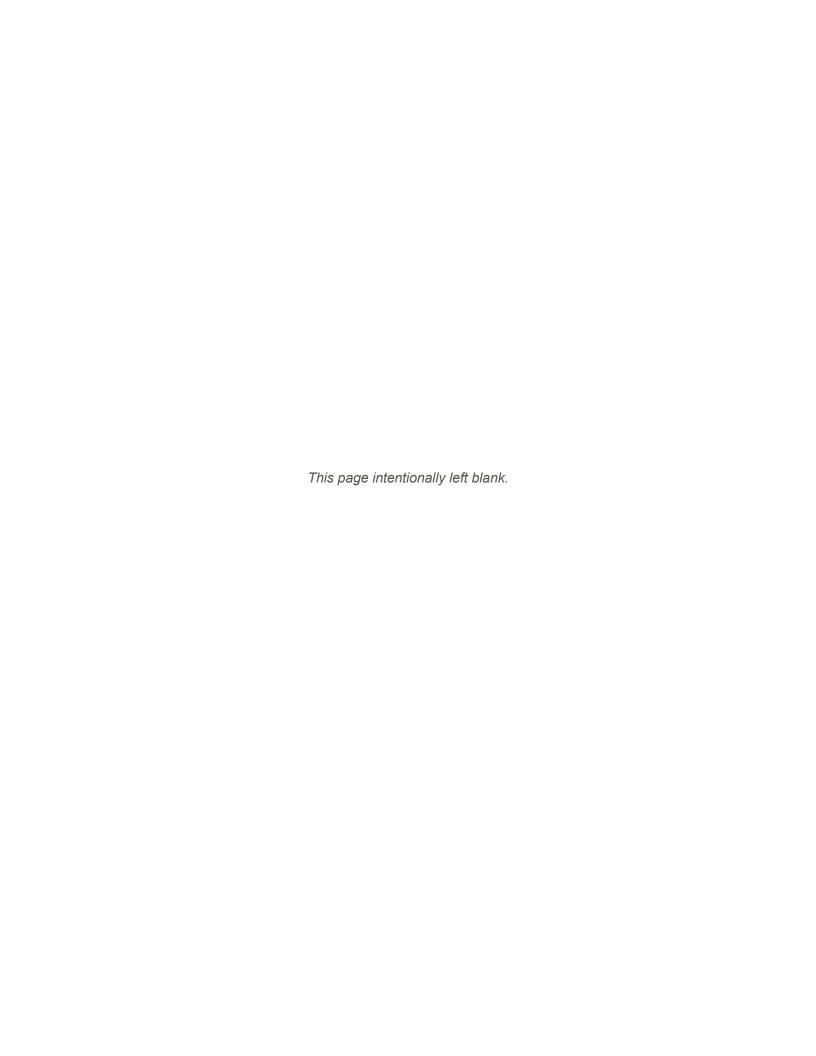
Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Stream 16 is classified as forested based on the NLCD. Stream 16 is in stable condition with conditions typical of A-type streams.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Metric	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
Пуштогоду	Reach Runon	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00	1.00				
Hydraulics Floor Floor Larg Late Geomorphology Ripa	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.6	0.00	0.38					l
	1 loodplain connectivity	Entrenchment Ratio (ft/ft)	1.5	0.75		0.55				
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.21579	0.73	0.73					
	Large Woody Debris	LWD Index			0.57					ĺ
	Large Woody Debris	LWD Piece Count (#/100m)	13.1	0.57	0.57					i
		Erosion Rate (ft/yr)								ĺ
	Lateral Migration	Dominant BEHI/NBS	H/M	0.20	0.60	0.70				İ
		Percent Streambank Erosion (%)	5	1.00	0.00					İ
		Percent Streambank Armoring (%)								İ
	Riparian Vegetation	Buffer Width (ft)	300	1.00						İ
Geomorphology		Average DBH (in)	8.59782	0.92						İ
		Tree Density (#/acre)	264	0.99	0.97					İ
		Native Shrub Density (#/acre)			0.57					İ
		Native Herbaceous Cover (%)								İ
		Monoculture Area (%)								İ
		Pool Spacing Ratio (ft/ft)	0.8	1.00						İ
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.4	0.12	0.66					İ
		Percent Riffle (%)	66	0.87						
	Temperature	Summer Daily Maximum (°F)								i .
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								i .
i nysicochemicai	Phosphorus	Total Phosphorus (mg/L)								1
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
Diology	Fish	South Carolina Biotic Index								

Version 1.1		Notes				
Version Last Updated:	7-Dec-22	1. Users input values that are	highlighted based on restoration p	otential		
		2. Users select values from a				
			values that were not measured			
		Programmatic Goal	IS T			
Select:		Other				
Expand on the programm	atic goals of this proje	ect:				
		Project Description	ı			
Project Name:		Bad Creek Pun	nped Storage Project			
Project ID:		De	vils Fork			
Ecoregion:		Blue Rid	ge Mountains			
River Basin:		Sa	avannah			
12-digit HUC:		306	01010104			
		Reach Summary				
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF
Quantification_Tool_US	evils Fork - Upstrear	Upstream of temporary access road cr	Single reach upstream to access	0.4	0.4	
		Downstream of temporary access road	Single reach from temporary			
Quantification_Tool_DS	vils Fork - Downstre	bownstream of temporary access road	access road, downstream	0.37	0.37	
	_			<u> </u>		
				4		

App	olicable Reach(es):	Devils Fork upstream and downstream					
Ove	erall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere None - all categories rated Good.	${f c}$ in the selection of the restoration potential of th	e reach(es):		
			Description of Catchment Condition	Catchment Condition			
	Categories	Poor	Fair	Good	(P/F/G)		
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G		
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G		
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G		
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G		
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G		
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G		
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G		
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G		
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G		
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G		
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G		
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aqu	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G		
13	Other						

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Devils Fork - Upstream				
Restoration Potential:	Partial				
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	Ва				
Reference Stream Type:	Ва				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	0.048813				
Stream Slope (%):	6				
Strahler Stream Order:	Second				
Flow Type:	Perennial				
Proposed Bed Material:					
Buffer Valley Slope (%):	5 - 20 %				
Dominant Buffer Land Use:	Single Family Residential				
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:					


	Notes
1. Users input values that are highlig	hted
2. Users select values from a pull-dov	vn menu
3. Leave values blank for field values	that were not measured

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.40			
Proposed Condition Score (PCS)	0.40			
Change in Functional Condition (PCS - ECS)	0.00			
Percent Condition Change	0%			
Existing Stream Length (ft)	100.0			
Proposed Stream Length (ft)				
Additional Stream Length (ft)				
Existing Functional Foot Score (FFS)				
Proposed Functional Foot Score (FFS)				
Proposed FFS - Existing FFS (△FF)				
Functional Yield (ΔFF/LF)				

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Devils Fork is classified as forested and 2.2 percent classified as impervious based on the NLCD. Devils Fork is in stable condition with conditions typical of A-type streams.

Functional Category	Function-Based Parameters	Metric	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT				
			Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
		Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
Hydraulics	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.2	0.00	0.18	0.48				
		Entrenchment Ratio (ft/ft)	1.2	0.35	0.18					
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.831366	0.79	0.79					
	Large Woody Debris	LWD Index			0.29					
	Large Woody Debris	LWD Piece Count (#/100m)	6.6	0.29	0.23					
		Erosion Rate (ft/yr)				0.60				
	Lateral Migration	Dominant BEHI/NBS	H/L	0.20	0.60					
		Percent Streambank Erosion (%)	3	1.00	0.00					
		Percent Streambank Armoring (%)								
		Buffer Width (ft)	300	1.00						
Geomorphology		Average DBH (in)	9.570866	1.00	1.00	0.53				
		Tree Density (#/acre)	203	1.00						
		Native Shrub Density (#/acre)								
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
	Bed Form Diversity	Pool Spacing Ratio (ft/ft)								
		Pool Depth Ratio (ft/ft)	0.7	0.00	0.22					
		Percent Riffle (%)	83	0.44						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
Physicochemical	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
		Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
ыоюду	Fish	South Carolina Biotic Index								

Attachment 4 **Consultation Documentation**

From: Elizabeth Miller < Miller E@dnr.sc.gov>
Sent: Thursday, December 21, 2023 1:33 PM

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; Dan Rankin; Erika

Hollis; Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Lorianne Riggin; Tom Daniel

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski,

Eric

Subject: RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic

Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Attachments: 20231221 Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report_SCDNR Comments.docx

Categories: Bad Creek

Some people who received this message don't often get email from millere@dnr.sc.gov. Learn why this is important

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Staff with the South Carolina Department of Natural Resources (SCDNR) have reviewed the Bad Creek Hydroelectric Project's Impacts to Surface Waters and Associated Aquatic Fauna Draft Report. We appreciated the opportunity to discuss our concerns and ask questions during the December 18th meeting. As discussed during the meeting, the SCDNR is providing a summary of our comments in the attached document by the extended deadline. Please let me know if you have any questions.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, November 17, 2023 1:50 PM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov> Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -

HDRInc < Eric. Mularski@HDRInc.com>

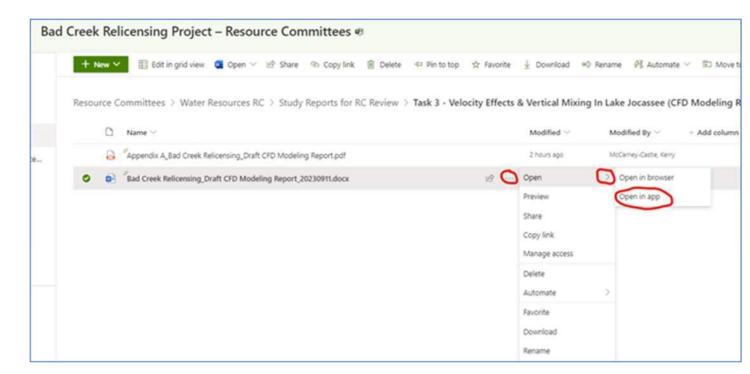
Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report

(READY FOR RESOURCE COMMITTEE REVIEW)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report <u>Impacts to Surface Waters and Associated Aquatic Fauna</u> for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link:


Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: <u>Crutchfield Jr., John U</u>

To: Elizabeth Miller; Lorianne Riggin; Tom Daniel; Dan Rankin; William T. Wood; Amy Breedlove

Cc: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; Mularski, Eric; Abney, Michael A; Wahl, Nick; McCarney-

Castle, Kerry

Subject: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft Report - 12/18/2023

Meeting Summary

Date: Thursday, December 21, 2023 3:51:07 PM

Attachments: <u>image001.pnq</u>

SCDNR SQT Tool conversation Dec18 20231221.docx

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

Please find attached a draft summary of our meeting on 12/18/2023 regarding discussion concerning the Impacts to Surface Waters and Associate Aquatic Fauna Draft Report. You can access the draft meeting summary by using the Bad Creek Relicensing SharePoint site link below or use the attached Word document, whichever you prefer.

SCDNR_SQT Tool conversation_Dec18_20231221.docx

We would appreciate if SC DNR could review and provide any comments on the meeting summary by Friday, 12/29/2023 so we can incorporate into the Initial Study Report to be filed with FERC by 1/4/2024.

Please let Alan of me know if you have any questions.

Thanks, and Best Holiday Wishes!

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; Abney, Michael A; Wahl, Nick; Mularski, Eric; McCarney-

Castle, Kerry; Huff, Jen

FW: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft Subject:

Report - 12/18/2023 Meeting Summary

Date: Thursday, December 21, 2023 4:56:02 PM

Attachments: image002.png

image003.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Tom Daniel < Daniel T@dnr.sc.gov> Sent: Thursday, December 21, 2023 4:04 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Elizabeth Miller < Miller E@dnr.sc.gov>

Subject: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic

Fauna Draft Report - 12/18/2023 Meeting Summary

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John,

I did not intend to give the impression that the SQT does not apply to colluvial valleys. Instead I meant that the SQT tool parameters for floodplain connectivity does not always translate to a high condition score for geomorphology for some high gradient streams. I would recommend the following revision. Sorry for the confusion on my part. Thanks!

T. Daniel noted the SOT was intended to portray streams with floodplain connectivity, which doesn't really apply always translate to high geomorphology scores for some colluvial river systems (like the subject streams)

Tom Daniel

Inland Project Manager, Office of Environmental Programs South Carolina Department of Natural Resources 1000 Assembly Street, PO Box 167

Columbia, SC 29202 Office: 803-734-3766 Mobile: 803-240-4826 danielt@dnr.sc.gov

www.dnr.sc.gov/environmental

Empowering South Carolinians to Live Life Outdoors

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Thursday, December 21, 2023 3:50 PM

To: Elizabeth Miller <MillerE@dnr.sc.gov">Miller <Miller <Miller Common Miller & M

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc

<<u>Eric.Mularski@HDRInc.com</u>>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Importance: High

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

Please find attached a draft summary of our meeting on 12/18/2023 regarding discussion concerning the Impacts to Surface Waters and Associate Aquatic Fauna Draft Report. You can access the draft meeting summary by using the Bad Creek Relicensing SharePoint site link below or use the attached Word document, whichever you prefer.

SCDNR SQT Tool conversation Dec18 20231221.docx

We would appreciate if SC DNR could review and provide any comments on the meeting summary by Friday, 12/29/2023 so we can incorporate into the Initial Study Report to be filed with FERC by 1/4/2024.

Please let Alan of me know if you have any questions.

Thanks, and Best Holiday Wishes!

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: <u>Crutchfield Jr., John U</u>

To: Elizabeth Miller; Lorianne Riggin; Tom Daniel; Dan Rankin; William T. Wood; Amy Breedlove

Cc: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; Mularski, Eric; Abney, Michael A; Wahl, Nick; McCarney-

Castle, Kerry

Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Date: Friday, December 22, 2023 11:00:35 AM

Attachments: image003.png

image004.png image005.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Elizabeth: Per request, use the SharePoint Wildlife and Botanical Resource Committee link below to access the kmz files.

Wildlife and Botanical RC

Regards, John

From: Elizabeth Miller < Miller E@dnr.sc.gov> Sent: Friday, December 22, 2023 10:25 AM

To: Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Lorianne Riggin <RigginL@dnr.sc.gov>; Tom Daniel <DanielT@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; William T. Wood <WoodW@dnr.sc.gov>; Amy Chastain <BreedloveA@dnr.sc.gov>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Mularski, Eric -HDRInc

<Eric.Mularski@HDRInc.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft Report - 12/18/2023 Meeting Summary

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John,

Yes, we would like access to the stream feature kmz files if possible.

Thank you,

Elizabeth

Elizabeth C. Miller

SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Friday, December 22, 2023 6:28 AM

To: Elizabeth Miller < MillerE@dnr.sc.gov">Milliam T. Wood < WoodW@dnr.sc.gov>; Amy Chastain < BreedloveA@dnr.sc.gov>

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc

 $<\underline{\text{Kerry.Mularski@HDRInc.com}}; Abney, Michael A <\underline{\text{Michael.Abney@duke-energy.com}}; Wahl, Nick <\underline{\text{Nick.Wahl@duke-energy.com}}; Kerry McCarney-Castle <\underline{\text{Kerry.McCarney-Castle@hdrinc.com}}$

Subject: RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Importance: High

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

As a follow-up action item identified in our December 18 meeting, please find attached the link to the Fisher Knob Natural Resources Assessment Report for the temporary access road construction. Note this report is draft and currently being finalized by Duke Energy and HDR. If you would like access to the stream feature KMZ files, please let me know and we can send the link.

Please let Alan or me know if you have any questions.

Regards,

John

From: Crutchfield Jr., John U

Sent: Thursday, December 21, 2023 3:50 PM

To: Elizabeth Miller < Miller E@dnr.sc.gov >; rigginl@dnr.sc.gov; Tom Daniel < danielt@dnr.sc.gov >; Dan Rankin < RankinD@dnr.sc.gov >; William Wood < woodw@dnr.sc.gov >; Amy Breedlove < BreedloveA@dnr.sc.gov >

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc

<<u>Fric.Mularski@HDRInc.com</u>>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Importance: High

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

Please find attached a draft summary of our meeting on 12/18/2023 regarding discussion concerning the Impacts to Surface Waters and Associate Aquatic Fauna Draft Report. You can access the draft meeting summary by using the Bad Creek Relicensing SharePoint site link below or use the attached Word document, whichever you prefer.

SCDNR SQT Tool conversation Dec18 20231221.docx

We would appreciate if SC DNR could review and provide any comments on the meeting summary by Friday, 12/29/2023 so we can incorporate into the Initial Study Report to be filed with FERC by 1/4/2024.

Please let Alan of me know if you have any questions.

Thanks, and Best Holiday Wishes!

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: Lorianne Riggin

To: Crutchfield Jr., John U; Elizabeth Miller; Tom Daniel; Dan Rankin; William T. Wood; Amy Breedlove

Cc: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; Mularski, Eric; Abney, Michael A; Wahl, Nick; McCarney-

Castle, Kerry

Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Date: Sunday, December 31, 2023 5:38:46 AM

Attachments: image001.pnq

image002.png image003.png image004.png

20231227 SCDNR SQT Tool conversation Dec18 20231221 SCDNR edits.docx

Some people who received this message don't often get email from rigginl@dnr.sc.gov. <u>Learn why this is important</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good Morning Brandon,

Please see attached comments from SCDNR on the notes.

Thanks, Lorianne

Lorianne Riggin
Office of Environmental Programs Director, SCDNR
Office 803-734-4199
Cell 803-667-2488
1000 Assembly Street, PO Box 167
Columbia, SC 29202
www.dnr.sc.gov/environmental

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, December 22, 2023 11:00 AM

To: Elizabeth Miller <MillerE@dnr.sc.gov>; Lorianne Riggin <RigginL@dnr.sc.gov>; Tom Daniel <DanielT@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; William T. Wood <WoodW@dnr.sc.gov>; Amy Chastain <BreedloveA@dnr.sc.gov>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com> Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated

Aquatic Fauna Draft Report - 12/18/2023 Meeting Summary

Elizabeth: Per request, use the SharePoint Wildlife and Botanical Resource Committee link below to access the kmz files.

Wildlife and Botanical RC

Regards, John

From: Elizabeth Miller < Miller E@dnr.sc.gov > Sent: Friday, December 22, 2023 10:25 AM

To: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>; Lorianne Riggin

<<u>RigginL@dnr.sc.gov</u>>; Tom Daniel <<u>DanielT@dnr.sc.gov</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>;

William T. Wood < <u>WoodW@dnr.sc.gov</u>>; Amy Chastain < <u>BreedloveA@dnr.sc.gov</u>>

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc

<<u>Fric.Mularski@HDRInc.com</u>>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: [EXTERNAL] RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft Report - 12/18/2023 Meeting Summary

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John,

Yes, we would like access to the stream feature kmz files if possible.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Friday, December 22, 2023 6:28 AM

To: Elizabeth Miller < Miller E@dnr.sc.gov >; Lorianne Riggin < Riggin L@dnr.sc.gov >; Tom Daniel < Daniel T@dnr.sc.gov >; Dan Rankin < Rankin D@dnr.sc.gov >; William T. Wood < Wood W@dnr.sc.gov >; Amy Chastain < Breedlove A@dnr.sc.gov >

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc

<<u>Fric.Mularski@HDRInc.com</u>>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Importance: High

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

As a follow-up action item identified in our December 18 meeting, please find attached the link to the Fisher Knob Natural Resources Assessment Report for the temporary access road construction. Note this report is draft and currently being finalized by Duke Energy and HDR. If you would like access to the stream feature KMZ files, please let me know and we can send the link.

Bad Creek Fisher Knob Access Road NRA 20231117.pdf

Please let Alan or me know if you have any guestions.

Regards,

John

From: Crutchfield Jr., John U

Sent: Thursday, December 21, 2023 3:50 PM

To: Elizabeth Miller < MillerE@dnr.sc.gov >; rigginl@dnr.sc.gov; Tom Daniel < danielt@dnr.sc.gov >; Dan Rankin < RankinD@dnr.sc.gov >; William Wood < woodw@dnr.sc.gov >; Amy Breedlove < BreedloveA@dnr.sc.gov >

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report - 12/18/2023 Meeting Summary

Importance: High

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

Please find attached a draft summary of our meeting on 12/18/2023 regarding discussion concerning the Impacts to Surface Waters and Associate Aquatic Fauna Draft Report. You can access the draft meeting summary by using the Bad Creek Relicensing SharePoint site link below or use the attached Word document, whichever you prefer.

SCDNR SQT Tool conversation Dec18 20231221.docx

We would appreciate if SC DNR could review and provide any comments on the meeting summary

by Friday, 12/29/2023 so we can incorporate into the Initial Study Report to be filed with FERC by 1/4/2024.

Please let Alan of me know if you have any questions.

Thanks, and Best Holiday Wishes!

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: SCDNR Comments on Aquatic Resources Impacts to Surface Waters Report

Date: Monday, December 18, 2023

Location: Microsoft Teams

Attendees (virtual meeting)

John Crutchfield, Duke Energy Alan Stuart, Duke Energy Nick Wahl, Duke Energy Sarah Kulpa, HDR Erin Settevendemio, HDR Kerry McCarney-Castle, HDR Eric Mularski, HDR William Wood, SCDNR Elizabeth Miller, SCDNR Lorianne Riggin, SCDNR Tom Daniel, SCDNR Amy Chastain, SCDNR Dan Rankin, SCDNR

Introduction

John Crutchfield welcomed participants and opened the meeting. The purpose of the meeting was to discuss comments/concerns from the South Carolina Department of Natural Resources (SCDNR) on the Aquatic Resources Study Impacts to Surface Waters Report submitted by Duke Energy and, more specifically, how the South Carolina Stream Quantification Tool (SQT) was applied to stream reaches in the vicinity of the Bad Creek Project that may be impacted by construction of a new temporary access road.

Discussion

Elizabeth Miller began the discussion by asking about individual stream segments and why they were split into upstream and downstream reaches (upstream and downstream of road crossings) instead of one whole reach.

Nick Wahl and Erin Settevendemio indicated that in each of the spots where the temporary access road could potentially cause impacts, dividing the stream into segments (upstream and downstream) would allow a control reach (reference reach) upstream if there was a need to conduct monitoring during construction or decommissioning of the temporary road.

Lorianne Riggin asked if there were bank pins/markers or bank pin points coordinates to established where cross sections were taken on each reach; coordinates were provided to mark the upstream and downstream extents to mark the reaches...the SQT needs the appropriate length of stream input to dictate representative functioning of a stream and while you can do less than less than 20 bank full widths, one still would need to survey for 2 meander wave-lengths and wondered if HDR was able to capture at least 2 meander wavelengths of stream reach for the assessed streams.

E. Settevendemio indicated HDR did capture a representative length for each stream assessed however, because these are headwater mountain streams, they are not sinuous, which is why the

approach of 100 feet upstream and downstream of the stream crossing was used as the approach for a total of 200 feet of stream reach. Longitudinal station numbers were recorded to note exact location of cross sections; however, bank pins were not installed.

L. Riggin asked specifically about Howard Creek where there is 20x bank full width entered in the SQT, which would have been 350 feet of stream length, so there would likely have been 2 meander wavelengths captured. E. Settevendemio confirmed that 2 meander wavelengths would have been captured at that site. L. Riggein stated that the data shows the upstream reach had four riffles and downstream there was only one. E. Settevendemio stated the downstream reach was different from the upstream reach because there was a log functioning as an impoundmentimpounding water, as well as a cascade, so it was very different from upstream conditions.

Alan Stuart asked if pulling up a Google Earth would help; E. Settevendemio noted there's not enough resolution/too much vegetation to see the individual stream reaches on typical imagery.

E. Settevendemio asked, in general, how different stream types are dealt with in the SQT – for instance on a small stream (A1+) with bedrock cascades (no riffle features, disconnected from the floodplain). L. Riggin indicated A-type streams are challenging to work with in the SQT because that type of stream usually isn't a stream being modeled with the SQT. Therefore, geomorphological features such as the entrenchment ratio may be skewed (because there may not be an appropriate database or reference curve to pull from). Basically, it is difficult (and possibly not appropriate) to use the SQT for A-type streams. Tom Daniel mentioned if the input stream is an A-type stream but the reference is a B, you can still get an entrenchment value. However, if the reference stream type is an A, then it draws from the A curve then the value comes back as FALSE. The tool will not evaluate entrenchment ratio for A-type streams.

L. Riggin mentioned many of the stream sheets returned FALSE for buffer (buffer land use category) and noted that the drop-down menu for the single family residential (which was discussed during the first meeting in June) should have been selected to capture land use/slope.

- ACTION ITEM: HDR will modify SQT spreadsheet input to "single family residential", thereby
 fixing the FALSE/ERROR and resulting in more accurate assessment of the stream reach.
 HDR will also revise buffer valley slopes as needed.
- L. Riggin also indicated that for macroinvertebrates and fish up to Level 5 of the SQT tool, measurements under Level 4 must be carried out (i.e., cannot skip levels to go from Level 3 to Level 5), such that total suspended solids (TSS) or turbidity should be measured for the tool to estimate the next level. Results for macroinvertebrates and fish are good to have, but results cannot be entered directly into the SQT tool. Tom Daniel mentioned, while it's not necessarily relevant for this project, when dealing with debits/credits, Level 3 which is partial restoration potential is an important category to have populated.
 - ACTION ITEM: HDR will modify SQT spreadsheet input to "Partial Restoration".

A. Stuart asked since TSS/Turbidity wasn't collected, will the SQT not work and is it necessary to go back and collect that data. L. Riggin and T. Daniel replied only Howard Creek would be applicable because of the basin-drainage area size requirements – not applicable to all streams – therefore, it likely is not feasible or necessary, especially because the results indicate Howard Creek is fully functional. A. Stuart asked if the data could be collected at a later time; Lorianne indicated turbidity or TSS would need to be 4-sampled 4 timess (quarterly basis) collected during the calendar year – as long as the sample is taken at the same stream reach on the same. Sampling should occur on a

<u>pre-established and standardized schedule (e.g., 2nd Tuesday of every 2nd month).</u> Eric Mularski asked if the TSS or turbidity measurements would need to go to a lab for processing and L. Riggin confirmed yes, they must be state lab-certified. T. Daniel reiterated it likely doesn't make sense to go out and collect data now (after the fact) just from Howard Creek. It wouldn't support the tool any further since the stream is already rated as <u>fully</u> functioningal.

- L. Riggin asked if HDR converted LWD (large woody debris) piece count to input into the SQT. E. Settevendemio confirmed.
- L. Riggin asked if the bedrock section of Stream 15 (i.e., the cascade reach) continued for 100 feet as is shown on the output. If there were no indicators of bank-full without any real flow and no defined channel, then SQT might not be appropriate for that reach. E. Settevendemio noted the cascade reach went as far as was visible from the end of the reach.
- E. Settevendemio asked about the applicability of the SQT on disappearing streams throughout the reach, as HDR was unsure of how to handle these types of features in the field. L. Riggin indicated choosing different stream breaks would have been the correct option and there is a section in Chapter 3 of the manual that indicates if there is a hard break that changes the features, it's best to choose a representative reach upstream and then after the stream re-emerges, to begin another reference reach. E. Settevendemio stated that HDR had the manual in the field for reference during surveys, and it was still unclear to the surveyors how to approach this type of situation.
- E. Miller asked why Stream 15 went from a B-type to a G-type (Rosgen) Lorianne guessed the upstream end was more of an upstream seepage and then it transitioned into a bedrock cascade. E. Settevendemio concurred and added there was some bank erosion on the G section with an adjacent to a wetland, and therefore was classified as a G instead of B. The wetland ran alongside the stream. E. Mularski indicated the area had a defined bed and bank.
- L. Riggin asked about inputting values into the SQT to compare to Rosgen stream types and decide which reference curve the SQT pulls from. For instance, width/depth ratios on Howard Creek, Upstream 16, and downstream Stream 17 were different results than expected (i.e., different results were obtained when she keyed in the parameters vs. what was included in the report). E. Settevendemio noted there are plus/minus values to the Rosgen values that could have resulted in slightly different results. As an example, while the entrenchment ratio for Howard Creek was higher than you would typically see for a B-type stream, the width-depth ratio reflected an F or B type stream classification. Having been in the field and understanding that Howard Creek is in a stable, high-quality condition, and the F-type stream classification does not make sense, therefore it was classified as a B-type stream.
- L. Riggin asked HDR to specifically re-assess the Rosgen typeinput for Stream 15 for upstream and downstream and Stream 16 because they may stratify differently in the tool based on different input.
 - ACTION ITEM: HDR will evaluate specific sections of streams as suggested by the SCDNR and will provide responses/report revisions in 2024.
- T. Daniel indicated there are a few smaller items SCDNR had concerns about:
 - It is unclear how -mean depth was calculated (unclear where data are coming from in the output, which cross-section is being used for mean depth (stable) and then everything else dependent on mean depth). E. Settevendemio indicated most of that information is behind the scenes and included in the hidden spreadsheets.

- 2. Stream 16 (upstream) on the stable cross section the max depth is 0.78 ft but the actual cross section in the tool and others associated with it are different depths (though riffle 1 is 0.76 added Lorianne, which is very close to 0.78 ft). Overall, it is difficult to figure out which is the representative reach and sometimes they don't match up.
 - ACTION ITEM: E. Settevendemio indicated she would clarify which cross sections
 were used as the stable cross sections and provide the extra data (from the hidden
 spreadsheets) and workbooks.
- 3. The lengths of the riffle sections are confusing 15 upstream/downstream total length was 12.6 ft and 3.7 ft in the SQT. Riffle 1 was 2 ft and Riffle 2 was <2 ft, so not sure where the total lengths are coming from. E. Settevendemio agreed riffle lengths were variable but noted the field team consisted of two Rosgen-trained scientists and another familiar with stream geomorphology carrying out the assessments; it was a collaborative effort and best professional judgement was used to agree on specific geomorphological features. L. Riggin agreed A-type streams are difficult to assess.
- L. Riggin noted there were several streams that didn't have bank erosion hazard index/near bank stress (BEHI/NBS). Settevendemio responded BEHI NBS measurements were only calculated only at points where erosion was occurring and contributing sediment to the stream. T. Daniel added that outside meander bends are also limited in B-type streams/those with low sinuosity.
- L. Riggin stated she had looked at data through the lens of the EPA Rapid Bioassessment Protocol (which was the approach used during the assessment) on how to assess existing function and indicated that most of the streams assessed for the Project are fully functional or partially impaired (with values very close to fully functional) according to the U.S. Army of Corps Charleston District Guidelines High Gradient Stream Assessment Sheets. E. Settevendemio concurred that the various stream habitat assessments performed for this study indicate that these streams are fully functional.
- T. Daniel indicated the SQT scores are good/high already, and with the additional modifications, the scores will only go up. E. Settevendemio acknowledged she was surprised the scores weren't higher initially. T. Daniel noted the SQT was intended to portray streams with floodplain connectivity, which doesn't really apply to colluvial rivers (like the subject streams). L. Riggin added that the highest score the streams can attain is 0.6 (due to only the first three functional levels being assessed).
- E. Settevendemio asked for clarification if it was important to go back out to Howard Creek for turbidity/TSS. L. Riggin indicated it would likely be a waste of time for this exercise as the score for Howard Creek already indicates a fully functioning stream. It would not <u>really change the value or output greatly in the SQTadvance this exercise for SQT application</u>; however, she deferred to E. Miller for overall scope <u>and need for the purposes the stakeholders wanted to evaluate these streams</u>.
- L. Riggin asked how long the temporary access roads would be in place A. Stuart indicated they would be in for the duration of the Bad Creek II Powerhouse construction (up to 7 years).

Dan Rankin asked how the roads would be constructed (if they would be Coweta-style roads, using bridges as opposed to culverts and broad-based dips, etc.). A. Stuart indicated impacts will be minimized to the extent practicable, using bridges instead of culverts, and noted the bridges will be removed – they are plain metal expansion bridges. A. Stuart noted if D. Rankin has any information for Coweta-style broad based on dip roads, Duke Energy would appreciate reviewing. A. Stuart asked about dips and if they are in certain areas near the creeks or if they are used throughout the

road extent. D. Rankin indicated the object is to get the water off the road to prevent erosion of the fill; broad based dips get water off roads in small volumes (low energy flow).

 ACTION ITEM: D. Rankin said he would ask Randy Fowler for information on the roads and send along information to Duke Energy.

L. Riggin noted if we are doing bridges that -spans the creeks with no fill below ordinary high water mark (OHWM), there would be no 404 permit/mitigation required: however, she wondered if the concept plans are far enough along to know about the specifics/designs (any grading below OHWM or fill associated with stabilization of the banks for bridge installation). A. Stuart indicated the engineering design is not far enough along yet to make any determinations. A. Stuart indicated road designs would be provided as soon as they become available.

E. Mularski indicated a WOTUS survey has been carried out for the streams that may be impacted by the access roads and will be used in the road design.

 ACTION ITEM: Duke Energy/HDR to send the Natural Resources Assessment report and stream feature KMZ for the temporary access road to SCDNR. (Note this report is presently being finalized by the Duke Energy and HDR teams.)

Regarding collection of TSS/turbidity, E. Miller reiterated since Howard Creek is already fully functioning, she doesn't not-think it necessary to collect that data. D. Rankin acknowledged the abundance of turbidity data already existing for Howard Creek, but also noted it may be of value to measure turbidity downstream.

The group discussed what is needed and timing for comments and responses, relative to the pending Initial Study Report (ISR) deadline (January 4). SCDNR will submit written comments by Friday December 22. Sarah Kulpa indicated that in the ISR, Duke Energy will include the draft (version sent to Resources Committee for review) Aquatic Resources Study Impacts to Surface Waters Report, with SCDNR's [pending] comments attached. The ISR will note that this meeting was held, and -Duke Energy will continue to collaborate with the SCDNR to address comments for the final Aquatic Resources Study Impacts to Surface Waters Report.

The meeting adjourned at the close of the hour. John thanked everyone for their participation in this process.

To: <u>Elizabeth Miller; Lorianne Riggin; Tom Daniel; Dan Rankin; William T. Wood; Amy Breedlove</u>

Cc: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; Mularski, Eric; Abney, Michael A; Wahl, Nick; McCarney-

Castle, Kerry

Subject: RE: Bad Creek Relicensing Impacts to Surface Waters and Associated Aquatic Fauna Draft Report - 12/18/2023

Meeting Summary REVISED

Date: Tuesday, January 9, 2024 12:52:46 PM

Attachments: <u>image002.png</u>

20231218 Bad Creek Meeting SCDNR Comments on Aquatic Resources Report Discussion.docx

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Elizabeth, Lorianne, Tom, Dan, William, and Amy:

Please find attached the revised December 18, 2023 meeting summary regarding the Impacts to Surface Waters and Associated Aquatic Fauna Draft Report. This meeting summary incorporates edits received from Lorianne and Tom.

The revised meeting summary can also be accessed via the Bad Creek Relicensing SharePoint site by using the link provided below:

20231218 Meeting to discuss SCDNR Comments on Aquatic Resources Report

Please let Alan and me know if you have any questions or further comments.

Regards,

John Crutchfield

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: SCDNR Comments on Aquatic Resources Impacts to Surface Waters Report Discussion

Date: Monday, December 18, 2023

Location: Microsoft Teams

Attendees (virtual meeting)

John Crutchfield, Duke Energy Alan Stuart, Duke Energy Nick Wahl, Duke Energy Sarah Kulpa, HDR Erin Settevendemio, HDR Kerry McCarney-Castle, HDR Eric Mularski, HDR William Wood, SCDNR Elizabeth Miller, SCDNR Lorianne Riggin, SCDNR Tom Daniel, SCDNR Amy Chastain, SCDNR Dan Rankin, SCDNR

Introduction

John Crutchfield welcomed participants and opened the meeting. The purpose of the meeting was to discuss comments/concerns from the South Carolina Department of Natural Resources (SCDNR) on the Aquatic Resources Study Impacts to Surface Waters Report submitted by Duke Energy and, more specifically, how the South Carolina Stream Quantification Tool (SQT) was applied to stream reaches in the vicinity of the Bad Creek Project that may be impacted by construction of a new temporary access road.

Discussion

Elizabeth Miller began the discussion by asking about individual stream segments and why they were split into upstream and downstream reaches (upstream and downstream of road crossings) instead of one whole reach.

Nick Wahl and Erin Settevendemio indicated that in each of the spots where the temporary access road could potentially cause impacts, dividing the stream into segments (upstream and downstream) would allow a control reach (reference reach) upstream if there was a need to conduct monitoring during construction or decommissioning of the temporary road.

Lorianne Riggin asked if there were bank pins/markers or coordinates to established where cross sections were taken on each reach; coordinates were provided to mark the upstream and downstream extents...the SQT needs the appropriate length of stream input to dictate representative functioning of a stream and while you can do less than less than 20 bank full widths, one still would need to survey for 2 meander wave-lengths and wondered if HDR was able to capture at least 2 meander wavelengths of stream reach for the assessed streams.

E. Settevendemio indicated HDR did capture a representative length for each stream assessed however, because these are headwater mountain streams, they are not sinuous, which is why the

approach of 100 feet upstream and downstream of the stream crossing was used as the approach for a total of 200 feet of stream reach. Longitudinal station numbers were recorded to note exact location of cross sections; however, bank pins were not installed.

L. Riggin asked specifically about Howard Creek where there is 20x bank full width entered in the SQT, which would have been 350 feet of stream length, so there would likely have been 2 meander wavelengths captured. E. Settevendemio confirmed that 2 meander wavelengths would have been captured at that site. L. Riggin stated that the data shows the upstream reach had four riffles and downstream there was only one. E. Settevendemio stated the downstream reach was different from the upstream reach because there was a log impounding water, as well as a cascade, so it was very different from upstream conditions.

Alan Stuart asked if pulling up a Google Earth would help; E. Settevendemio noted there's not enough resolution/too much vegetation to see the individual stream reaches on typical imagery.

E. Settevendemio asked, in general, how different stream types are dealt with in the SQT – for instance on a small stream (A1+) with bedrock cascades (no riffle features, disconnected from the floodplain). L. Riggin indicated A-type streams are challenging to work with in the SQT because that type of stream usually isn't a stream being modeled with the SQT. Therefore, geomorphological features such as the entrenchment ratio may be skewed (because there may not be an appropriate database or reference curve to pull from). Basically, it is difficult (and possibly not appropriate) to use the SQT for A-type streams. Tom Daniel mentioned if the input stream is an A-type stream but the reference is a B, you can still get an entrenchment value. However, if the reference stream type is an A, then it draws from the A curve then the value comes back as FALSE. The tool will not evaluate entrenchment ratio for A-type streams.

L. Riggin mentioned many of the stream sheets returned FALSE for buffer (buffer land use category) and noted that the drop-down menu for the single family residential (which was discussed during the first meeting in June) should have been selected to capture land use/slope.

- ACTION ITEM: HDR will modify SQT spreadsheet input to "single family residential", thereby
 fixing the FALSE/ERROR and resulting in more accurate assessment of the stream reach.
 HDR will also revise buffer valley slopes as needed.
- L. Riggin also indicated that for macroinvertebrates and fish up to Level 5 of the SQT tool, measurements under Level 4 must be carried out (i.e., cannot skip levels to go from Level 3 to Level 5), such that total suspended solids (TSS) or turbidity should be measured for the tool to estimate the next level. Results for macroinvertebrates and fish are good to have, but results cannot be entered directly into the SQT tool. Tom Daniel mentioned, while it's not necessarily relevant for this project, when dealing with debits/credits, Level 3 which is partial restoration potential is an important category to have populated.
 - ACTION ITEM: HDR will modify SQT spreadsheet input to "Partial Restoration".

A. Stuart asked since TSS/Turbidity wasn't collected, will the SQT not work and is it necessary to go back and collect that data. L. Riggin and T. Daniel replied only Howard Creek would be applicable because of the drainage area size requirements – not applicable to all streams – therefore, it likely is not feasible or necessary, especially because the results indicate Howard Creek is fully functional. A. Stuart asked if the data could be collected at a later time; Lorianne indicated turbidity or TSS would need to be sampled 4 times (quarterly basis) during the calendar year – as long as the sample is taken at the same stream reach on the same. Sampling should occur on a pre-established and

standardized schedule (e.g., 2nd Tuesday of every 2nd month). Eric Mularski asked if the TSS or turbidity measurements would need to go to a lab for processing and L. Riggin confirmed yes, they must be state lab-certified. T. Daniel reiterated it likely doesn't make sense to go out and collect data now (after the fact) just from Howard Creek. It wouldn't support the tool any further since the stream is already rated as fully functional.

- L. Riggin asked if HDR converted LWD (large woody debris) piece count to input into the SQT. E. Settevendemio confirmed.
- L. Riggin asked if the bedrock section of Stream 15 (i.e., the cascade reach) continued for 100 feet as is shown on the output. If there were no indicators of bankfull without any real flow and no defined channel, then SQT might not be appropriate for that reach. E. Settevendemio noted the cascade reach went as far as was visible from the end of the reach.
- E. Settevendemio asked about the applicability of the SQT on disappearing streams throughout the reach, as HDR was unsure of how to handle these types of features in the field. L. Riggin indicated choosing different stream breaks would have been the correct option and there is a section in Chapter 3 of the manual that indicates if there is a hard break that changes the features, it's best to choose a representative reach upstream and then after the stream re-emerges, to begin another reference reach. E. Settevendemio stated that HDR had the manual in the field for reference during surveys, and it was still unclear to the surveyors how to approach this type of situation.
- E. Miller asked why Stream 15 went from a B-type to a G-type (Rosgen) Lorianne guessed the upstream end was more of an upstream seepage and then it transitioned into a bedrock cascade. E. Settevendemio concurred and added there was some bank erosion on the G section with an adjacent wetland, and therefore was classified as a G instead of B. The wetland ran alongside the stream. E. Mularski indicated the area had a defined bed and bank.
- L. Riggin asked about inputting values into the SQT to compare to Rosgen stream types and decide which reference curve the SQT pulls from. For instance, width/depth ratios on Howard Creek, Upstream 16, and downstream Stream 17 were different results than expected (i.e., different results were obtained when she keyed in the parameters vs. what was included in the report). E. Settevendemio noted there are plus/minus values to the Rosgen values that could have resulted in slightly different results. As an example, while the entrenchment ratio for Howard Creek was higher than you would typically see for a B-type stream, the width-depth ratio reflected an F or B type stream classification. Having been in the field and understanding that Howard Creek is in a stable, high-quality condition, and the F-type stream classification does not make sense, therefore it was classified as a B-type stream.
- L. Riggin asked HDR to specifically re-assess the Rosgen type for Stream 15 for upstream and downstream and Stream 16 because they may stratify differently in the tool based on different input.
 - ACTION ITEM: HDR will evaluate specific sections of streams as suggested by the SCDNR and will provide responses/report revisions in 2024.
- T. Daniel indicated there are a few smaller items SCDNR had concerns about:
 - It is unclear how mean depth was calculated (unclear where data are coming from in the output, which cross-section is being used for mean depth (stable) and then everything else dependent on mean depth). E. Settevendemio indicated most of that information is behind the scenes and included in the hidden spreadsheets.

- 2. Stream 16 (upstream) on the stable cross section the max depth is 0.78 ft but the actual cross section in the tool and others associated with it are different depths (though riffle 1 is 0.76 added Lorianne, which is very close to 0.78 ft). Overall, it is difficult to figure out which is the representative reach and sometimes they don't match up.
 - ACTION ITEM: E. Settevendemio indicated she would clarify which cross sections
 were used as the stable cross sections and provide the extra data (from the hidden
 spreadsheets) and workbooks.
- 3. The lengths of the riffle sections are confusing 15 upstream/downstream total length was 12.6 ft and 3.7 ft in the SQT. Riffle 1 was 2 ft and Riffle 2 was <2 ft, so not sure where the total lengths are coming from. E. Settevendemio agreed riffle lengths were variable but noted the field team consisted of two Rosgen-trained scientists and another familiar with stream geomorphology carrying out the assessments; it was a collaborative effort and best professional judgement was used to agree on specific geomorphological features. L. Riggin agreed A-type streams are difficult to assess.
- L. Riggin noted there were several streams that didn't have bank erosion hazard index/near bank stress (BEHI/NBS). Settevendemio responded BEHI NBS measurements were only calculated only at points where erosion was occurring and contributing sediment to the stream. T. Daniel added that outside meander bends are also limited in B-type streams/those with low sinuosity.
- L. Riggin stated she had looked at data through the lens of the EPA Rapid Bioassessment Protocol (which was the approach used during the assessment) on how to assess existing function and indicated that most of the streams assessed for the Project are fully functional or partially impaired (with values very close to fully functional) according to the U.S. Army of Corps Charleston District Guidelines High Gradient Stream Assessment Sheets. E. Settevendemio concurred that the various stream habitat assessments performed for this study indicate that these streams are fully functional.
- T. Daniel indicated the SQT scores are good/high already, and with the additional modifications, the scores will only go up. E. Settevendemio acknowledged she was surprised the scores weren't higher initially. T. Daniel noted the SQT was intended to portray streams with floodplain connectivity, which doesn't always translate to high geomorphology scores for some colluvial rivers systems (like the subject streams). L. Riggin added that the highest score the streams can attain is 0.6 (due to only the first three functional levels being assessed).
- E. Settevendemio asked for clarification if it was important to go back out to Howard Creek for turbidity/TSS. L. Riggin indicated it would likely be a waste of time for this exercise as the score for Howard Creek already indicates a fully functioning stream. It would not really change the value or output greatly in the SQT; however, she deferred to E. Miller for overall scope and need for the purposes the stakeholders wanted to evaluate these streams.
- L. Riggin asked how long the temporary access roads would be in place A. Stuart indicated they would be in for the duration of the Bad Creek II Powerhouse construction (up to 7 years).

Dan Rankin asked how the roads would be constructed (if they would be Coweta-style roads, using bridges as opposed to culverts and broad-based dips, etc.). A. Stuart indicated impacts will be minimized to the extent practicable, using bridges instead of culverts, and noted the bridges will be removed – they are plain metal expansion bridges. A. Stuart noted if D. Rankin has any information for Coweta-style broad based on dip roads, Duke Energy would appreciate reviewing. A. Stuart asked about dips and if they are in certain areas near the creeks or if they are used throughout the

road extent. D. Rankin indicated the object is to get the water off the road to prevent erosion of the fill; broad based dips get water off roads in small volumes (low energy flow).

 ACTION ITEM: D. Rankin said he would ask Randy Fowler for information on the roads and send along information to Duke Energy.

L. Riggin noted if we are doing bridges that span the creeks with no fill below ordinary high water mark (OHWM), there would be no 404 permit/mitigation required: however, she wondered if the concept plans are far enough along to know about the specifics/designs (any grading below OHWM or fill associated with stabilization of the banks for bridge installation). A. Stuart indicated the engineering design is not far enough along yet to make any determinations. A. Stuart indicated road designs would be provided as soon as they become available.

E. Mularski indicated a WOTUS survey has been carried out for the streams that may be impacted by the access roads and will be used in the road design.

 ACTION ITEM: Duke Energy/HDR to send the Natural Resources Assessment report and stream feature KMZ for the temporary access road to SCDNR. (Note this report is presently being finalized by the Duke Energy and HDR teams.)

Regarding collection of TSS/turbidity, E. Miller reiterated since Howard Creek is already fully functioning, she doesn't think it necessary to collect that data. D. Rankin acknowledged the abundance of turbidity data already existing for Howard Creek, but also noted it may be of value to measure turbidity downstream.

The group discussed what is needed and timing for comments and responses, relative to the pending Initial Study Report (ISR) deadline (January 4). SCDNR will submit written comments by Friday December 22. Sarah Kulpa indicated that in the ISR, Duke Energy will include the draft (version sent to Resources Committee for review) Aquatic Resources Study Impacts to Surface Waters Report, with SCDNR's [pending] comments attached. The ISR will note that this meeting was held, and Duke Energy will continue to collaborate with the SCDNR to address comments for the final Aquatic Resources Study Impacts to Surface Waters Report.

The meeting adjourned at the close of the hour. John Crutchfield thanked everyone for their participation in this process.

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten;

Wahl, Nick; William T. Wood; Mularski, Eric

 Cc:
 Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

 Subject:
 Bad Creek Relicensing - Aquatic Resources Task 3 Final Report

Date: Wednesday, February 14, 2024 11:56:19 AM

Attachments: <u>image001.png</u>

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:

The final report for the Aquatic Resources Task 3 (Impacts to Surface Waters and Associated Aquatic Fauna) is completed and available for distribution to Committee members at the following Bad Creek Relicensing SharePoint site:

FINAL Report

The final report includes supporting attachments and the Comment Response Table (pdf file) which addresses SCDNR review comments.

Please let Alan or me know if you have any questions.

Regards,

John Crutchfield

To: <u>Elizabeth Miller</u>; <u>Lorianne Riggin</u>

Cc: Stuart, Alan Witten; Abney, Michael A; Wahl, Nick; Kulpa, Sarah; Settevendemio, Erin; Mularski, Eric; McCarney-

Castle, Kerry; Salazar, Maggie

Subject: FW: Bad Creek Relicensing - Aquatic Resources Task 3 Final Report

Date: Wednesday, February 14, 2024 12:02:41 PM

Attachments: <u>image001.png</u>

SQT Rapid Method Workbooks.zip

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Elizabeth and Lorianne: Per SCDNR's previous request, please find attached the SC SQT Workbooks (zip file).

Let Alan or me know if you have any questions.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, February 14, 2024 11:56 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com>; Amy Breedlove

<BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller

<MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio

<Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines

<jhains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds

<melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern

<kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-</pre>

energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William Wood <woodw@dnr.sc.gov>;

Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-

Castle@hdrinc.com>; Maggie Salazar < maggie.salazar@hdrinc.com>

Subject: Bad Creek Relicensing - Aquatic Resources Task 3 Final Report

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:

The final report for the Aquatic Resources Task 3 (Impacts to Surface Waters and Associated Aquatic Fauna) is completed and available for distribution to Committee members at the following Bad Creek Relicensing SharePoint site:

FINAL Report

The final report includes supporting attachments and the Comment Response Table (pdf file) which addresses SCDNR review comments.

Please let Alan or me know if you have any questions.

Regards,

John Crutchfield

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
1.	South Carolina Department of Natural Resources	12/21/2023	Table 6-3	Is the Stream 16 that is listed as a reference reach the same Stream 16 that is proposed to be impacted by the proposed road? If it is the same stream, the SCDNR recommends that streams that are being proposed for impact would not make appropriate reference reaches.	Reference reach selections for comparison of the USEPA Rapid Bioassessment Protocol were based on stream size, stream type, and overall condition. The streams used as reference reaches were in stable, fully functioning condition. Stream 16 was originally used as a reference reach because HDR believed the stream was in reference-reach type condition; furthermore, the no impacts are expected to Stream 16 (or any other stream along the temporary access road), and most particularly, the upstream reach of the streams along the access road which are above the area of activity. Regardless, the use of a reference reach to obtain reference reach index is not a required part of the USEPA RBP analysis and has been removed from the analysis and report.
2.	South Carolina Department of Natural Resources	12/21/2023	Table 6-7	The maximum score should be a 0.6 as the streams were not measured for suspended solids which would be required for any EPT Taxa Present to be used. Due to the drainage area requirements for the use of EPT Taxa in the SC SQT (reference curve stratification), the use of EPT index would have to be used and not included in the tool.	HDR has reviewed the SQT Data Collection and Analysis Manual; it is unclear where in the document it is stated that suspended solids are a required measurement alongside macroinvertebrate sampling. HDR acknowledges that this is stated on page 27 of the SQT User Manual, however in practical application of this method (field data collection first, followed by data entry to the tool), we recommend that the requirement for TSS be made explicit in the SQT Data Collection and Analysis Manual. HDR reduced the maximum score to 0.6 and removed entries for the physiochemical and biological high-level functional classes for all streams.

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
3.	South Carolina Department of Natural Resources	12/21/2023	Table 6-7	The upstream extent of Stream 15 is classified as a G but the downstream end an A1a+. Do these sections have a clearly defined bed and bank – a channel?	Yes, both stream reaches exhibited bed and bank features. Additional photographs have been added - see photographs 7 through 9 in Attachment G.
4.	South Carolina Department of Natural Resources	12/21/2023	Attachment 2 [B]	All streams should be labeled on the maps and figures should be labeled.	Labels for all streams were added to figures.
5.	South Carolina Department of Natural Resources	12/21/2023	Attachment 2 [B]	To avoid confusion and aid in agency review, the SCDNR recommends each stream has its own unique name. For example, Stream 15 is listed in Attachment 1 and 2 as two different streams.	Stream names have been updated to format "Stream #" in the report for clarity; however, stream names in Attachment A (Aquatic Resources Study Approach to Stream Surveys Memo) cannot be updated as the streams referenced as "Potential Access Road Crossings" were estimated prior to field surveys. Attachment A was provided to SCDNR and the Aquatic Resources Committee in August 2023 and was included with the ISR for completeness.
6.	South Carolina Department of Natural Resources	12/21/2023	Attachment C	On page 47 of the pdf, the assessment for Stream 17/Devils Fork totals 140. However, on page 53 of the assessment, the score for Stream 17 scores 143 and on page 55 of the assessment, Devils Fork scores 155. Please clarify if these scores are redundant scores for a single stream or if they are scores for three different stream reaches.	Labels on data forms have been clarified according to stream locations. Devils Fork was surveyed in two separate locations (one in spoil area G, one at the temporary access road crossing).
7.	South Carolina Department of Natural Resources	12/21/2023	Attachment C	Vegetative Protection scores in forested areas typically receive the highest scores to reflect "vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally." Consider upward revisions to streams with lower scores in this metric (e.g., S12, S16, S17/Devils Fork, and S4)	Streams with lower scores for Vegetative Protection were increased per SCDNR's recommendation.

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
8.	South Carolina Department of Natural Resources	12/21/2023	Attachment C	Riparian Vegetative Zone Width (i.e., riparian buffer width) scores for streams in forested areas should typically receive the highest rating. Consider upward revisions to streams with lower scores in this metric. (e.g., S7/Howard Creek, S12, S15, S16, and S17/Devils Fork)	Streams with lower scores for Riparian Vegetative Zone Width were increased per SCDNR's recommendation.
9.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	The values for Bankfull Mean Depth used in the SQT tool are not disclosed in the materials, nor can the calculations based on Bankfull Mean Depth be replicated using the information provided in the stable riffle cross sections. Please provide the values for Bankfull Mean Depth for all stream reaches and/or show how the values for Bankfull Mean Depth were calculated.	Some of the information in the SC SQT workbooks is hidden and therefore not presented when workbooks were generated as pdfs. The workbooks will be provided to SCDNR for ease of review and transparency. Bankfull mean depth is located in cell V42.
10.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	The Pool Depth Ratio parameter can be very sensitive to changes in the calculations for Bankfull Mean Depth. SCDNR staff were unable to verify Bankfull Mean Depth calculations using the information provided and were therefore unable to verify the values of Pool Depth Ratio for most stream reaches.	Some of the information in the SC SQT workbooks is hidden and therefore not presented when workbooks were generated as pdfs. The workbooks will be provided to SCDNR for their review for ease of review and transparency. Pool depth ratio is located in cell M85.
11.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	The values for Bankfull Max Depth do not always match the values provided in the stable riffle cross section (e.g., LP Creek Up, LP Creek Down, HC Down, UT12 Up, UT15 Down, UT16 Up, UT17 Up), which can influence calculations of BHR and ER. To enable review and QA/QC of the SQT results, please indicate which of the riffle cross sections is the stable riffle cross section.	An asterisk has been added to the Riffle Data which indicates which riffle was used for the stable cross section.

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
12.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	To avoid introducing rounding error into calculated parameters, please use full resolution (i.e., unrounded) measurements in all calculations.	Numbers have been updated where needed to avoid rounding.
13.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	The Flood Prone Width for Limber Pole Creek (Downstream) should be verified and/or revised as appropriate.	HDR appreciates SCDNR's thorough review. This number was incorrectly entered as the height of flood prone width (2x max bankfull depth) and has been updated to reflect the flood prone width.
14.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	Many of the riffle stations are very short, sometimes shorter than 5 feet (e.g., 15 U&D (multiple), 16 Up (multiple), 16 Down (R2), 17 Up (R1)). Please note that the term riffle refers to the cascade sections of steep mountain streams. Riffles are measured from head of riffle to head of pool (runs are considered riffles) and so the percent riffle metric would be the complement of percent pool. (i.e., % Riffle = 1 - % Pool). The station lengths (and % riffle parameter) should be verified and revised as appropriate for all reaches, particularly those mentioned above.	Streams 15, 16, and 17 are much smaller than Streams 1 or 7, and therefore have higher frequency of riffles and pools. HDR followed the procedure to include runs as part of riffles, and glides as part of pools. The field surveyors included one Rosgen-trained Biologist and two Water Resources Engineers, one of which is Rosgen trained and the other having prior experience with stream surveying. The delineation of riffles and pools was made on a consensus basis using observation of typical stream geomorphology characteristics such as thalweg slope, surface water slope, water depth, and substrate sorting. The percentage of riffles was also affected by the presence of cascades (e.g., Stream 15) which were not counted as riffles, or stream flow disappearing underground (e.g., Stream 17). Data entry has been reviewed, confirmed and/or adjusted where needed.
15.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	Stream 15 Downstream notes that there wasn't a great bankfull indicator due to a wide bedrock area. Is that representative of the entire 100 feet of Stream 15 downstream? Is there a defined channel at all? If not, SQT may not be an appropriate method for assessing the function of this aquatic feature.	An additional photo of the downstream reach of Stream 15 was added to Attachment G. The steep bedrock area encompassed the entire 100-foot reach and beyond. Bed and bank are present.

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
16.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	Stream 16 – notes that 20 times the bankfull width (10.5) is 20.5 – it should be 210.	This has been corrected.
17.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	Please check if the appropriate Rosgen stream type was chosen for Stream 15 Upstream and Stream 16 Downstream.	Both upstream Stream 15 and downstream Stream 16 are entrenched with low width/depth ratio, low sinuosity, and moderate slope, which are all characteristics of G-type streams. Both reaches also exhibit streambank erosion, which is typical of G-type streams. No change was made to the Rosgen classifications for these streams.
18.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	In the cross section measurement depth data, the first and last bankfull depth measurements should always be the edge of the channel (i.e., bankfull depth = 0). Please verify the accuracy of this information as errors in bankfull depth measurements can potentially influence many of the geomorphic ratios.	Agree – cross sections were corrected where needed.
19.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	Please reference Chapter 3 of the SQT Data Collection manual to assess if reach breaks were needed on any streams analyzed (e.g., the stream that went subsurface).	The stream reaches were segmented between "upstream" and "downstream" of the potential temporary access road because the manual states that reaches should be segmented with respect to impact activities. Although no impacts are proposed, the division of the stream reaches at the road crossing is the targeted area of activity related to access road construction.
20.	South Carolina Department of Natural Resources	12/21/2023	Attachment F	For Stream 16, please provide coordinates and a photo of the concentrated flow point.	Photo of the concentrated flow point (CFP) has been added to the Attachment G stream photolog – Photo 12.
21.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	As stated in the 6/21/2023 meeting summary for the discussion on the SC SQT, for riparian buffer width in the SQT, it was recommended that the Dominant Buffer Land Use for Single	The Dominant Buffer Land Use was updated to apply "Single Family Residential". HDR recommends that the manual provide additional guidance on the selection of this metric, as this

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
				Family Residential should be used. All of the SQT datasheets do not include the Dominant Buffer Land Use and therefore the Buffer Width values entered are yielding a FALSE index value. This is one of the many stratifications in the SQT that guides the tool which reference curve it should be referencing. This needs to be updated on all the streams measured with SQT.	selection is not intuitive for application to undeveloped areas.
22.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	Buffer valley slope values for colluvial valleys are often reported as being less than 10%, with some reported as less than 5%. Please note that the buffer slopes should account for the slope of the adjacent valley. Colluvial, V-shaped valleys are often associated with steep buffer slopes. Please note any considerable changes in buffer valley slope within a given stream reach.	Buffer valley slopes were confirmed or adjusted as necessary based on slope calculated in GIS using two-foot topography for the valleys of each stream reach. Buffer valley slope was updated for Stream 1 US/DS, Stream 7 US/DS, and Stream 12 US/DS.
23.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	Most of the stream reaches surveyed with SQT seem to utilize 100 linear feet as the reach to be surveyed. The SQT does allow for less than 20 times the bankfull width to be surveyed so long as it captures at least two meander wavelengths. Some of the streams surveyed would not have meander wavelengths due to them being Rosgen Type B streams – step-pool streams. Of all the streams surveyed does the 100 feet capture at least two meander wavelengths or at least four step-pool features? Why were reaches of streams broken into 100 feet segments – e.g., Limberpole Upstream and Downstream instead of 200 feet of Limberpole being assessed in the SQT?	As stated during the December 18, 2023 virtual meeting between SCDNR, Duke Energy, and HDR, as well as in the Stream Survey Approach Memo, no impacts to streams crossed by the temporary access road are proposed. The 100-foot length per reach was selected with intention to balance the needs of the Bad Creek Pumped Storage Project relicensing and SCDNR's request to use the tool. In the <i>Data Collection and Analysis Manual</i> , it states that "if the entire reach is shorter than 20 times the bankfull width, then the entire project reach should be assessed." For the purposes of this analysis, the project area was considered to be 100 feet upstream and downstream of the temporary access road crossing (this is also the area that was delineated

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
					for Waters of the U.S.). Therefore, this was the extent that was applied for the SQT.
					The stream reaches were segmented between "upstream" and "downstream" of the potential temporary access road because the manual states that reaches should be segmented with respect to impact activities. Although no impacts are proposed, the division of the stream reaches at the road crossing is the targeted area of activity related to access road construction.
24.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	Consistently throughout, the SQT worksheets include the use of the EPT index entered as the field value instead of EPT taxa present. As discussed in the 6/15/23 comments from SCDNR in response to the 5/24/2023 SQT Meeting Notes, the SCDNR noted that "The Macroinvertebrate reference curves within the SQT are only applicable to perennial streams with a drainage area of 3 square miles or larger We recommend that other metrics are used for macroinvertebrates, like a simple baseline of EPT be established between June 15 and September 15 and monitored post-disturbance within that same time period. DHEC should be consulted and provide input on this recommendation." As previously mentioned, please update all SQT workbooks to remove EPT.	EPT was removed from the SQT worksheets per SCDNR's request.
25.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	SQT Limber Pole Creek Upstream – LWD piece count entered as 39.4 but it is 49.2.	Agree – this has been updated.
26.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	On all the SQT workbooks, under restoration potential, choose partial in the Site	This has been updated for all stream reaches.

No.	Agency	Date Submitted	Report Section	Comment	Duke Energy Response
				Information and Reference Curve Stratification section.	
27.	South Carolina Department of Natural Resources	12/21/2023	Attachment J	On all the SQT workbooks, please make sure the appropriate valley slope is chosen to properly have buffer width field values to reference the appropriate reference curve in the Site Information and Reference Curve Stratification section. Many appear to be lower than expected for Rosgen A or B Type streams.	Buffer valley slopes were confirmed or adjusted as necessary based on slope calculated in GIS using two-foot topography for the valleys of each stream reach. Buffer valley slope was updated for Stream 1 US/DS, Stream 7 US/DS, and Stream 12 US/DS.
28.	South Carolina Department of Natural Resources	12/21/2023	N/A	In the meeting held 12/18/23, it was mentioned that the upstream reach for many of these segments was going to be used as a reference for downstream. Keep in mind that it is important to define what the upstream segment may be reference for; for example, if it is for water quality parameters or biology, that makes complete sense. For geomorphology, a reference reach can be within the same ecoregion and the same Rosgen stream type; it doesn't necessarily have to be in the same stream, but it can be.	Duke Energy agrees that the term "reference" reach is not applicable if the upstream and downstream reaches differ in stream type. A more appropriate term would be "comparative" reach, with intent to use the upstream reaches as a control for external, stochastic events which may influence stream condition and function, but not which is caused by activities associated with the temporary access road, such as a large storm event. In combination with "before and after" assessments, this will allow us to evaluate potential effects, if any, with consideration of changes due to natural causes.

To: Alex Pellett; Alison Jakupca; Amy Breedlove; Andrew Grosse; Austen Attaway; bereskind; Wes Cooler; Dan

Rankin; Andy Douglas; Greg Mixon; jhains@g.clemson.edu; Erika Hollis; Jeff Phillips; Jennifer Kindel; jtk7140@me.com; Keith A. Bradley; Kelly Kirven; Ken Forrester; Kulpa, Sarah; quattrol; Dunn, Lynne; Raber, Maverick James; McCarney-Castle, Kerry; Abney, Michael A; Elizabeth Miller; Iputnammitchell@gmail.com; Amedee, Morgan D.; Morgan Kern; Mularski, Eric; Wahl, Nick; Olds, Melanie J; Pat Cloninger; More, Priyanka; Bill Ranson-Retired; SelfR; Rowdy Harris; Salazar, Maggie; Samantha Tessel; Fletcher, Scott T; Scott Harder;

Settevendemio, Erin; Chris Starker; Stuart, Alan Witten; Tom Daniel; Dale Wilde; William T. Wood;

suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2@yahoo.com; Kevin Nebiolo

Cc: <u>Lineberger, Jeff</u>

Subject: Bad Creek Relicensing Joint Resource Committees Meeting- CHEOPS Modeling Results (Water Resources Task

No. 4)--SAVE THE DATE

Date: Wednesday, February 21, 2024 5:40:02 PM

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resource Committee Stakeholders:

Duke Energy would like to convene a joint meeting of the Water Resources, Aquatic Resources, Recreation & Visual Resources and Operations Resources Committees to review the CHEOPS modeling results including the previously established Performance Measures.

The meeting will be a virtual Teams meeting scheduled for Thursday, April 4, 9 am-12 pm.

A meeting notice will be sent to you in the next few days.

Please let Alan or me know if you have any questions.

Regards,

John

Crutchfield

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; gcyantis2; jhains@g.clemson.edu; guattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Mularski, Eric

Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

Subject: RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report

(Available for Review)

Date: Friday, May 3, 2024 12:45:56 PM

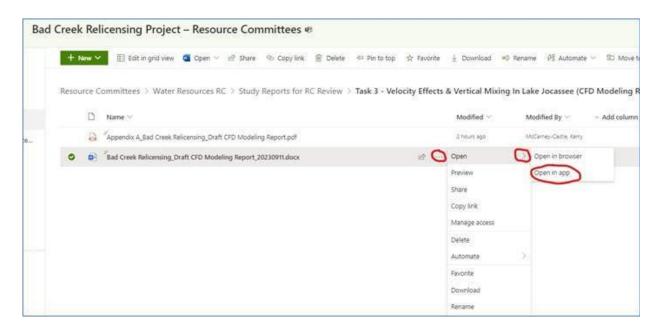
Attachments: image001.pnq image002.png

Importance: High

Cc:

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the *Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report* for Resource Committee review. This draft report satisfies Task 2 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following folder link: Task 2 - Effects of BCII and Expanded Weir on Aq Habitat. Please make all comments and edits in the Word version using tracked changes. The attachments for the report are provided in the PDF included in the folder.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **June 3rd**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

- Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: Crutchfield Jr., John U

To: McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] Effects of Bad Creek II and Expanded Weir on Aquatic Habitat

Date: Monday, May 13, 2024 1:53:58 PM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Erika Hollis <ehollis@upstateforever.org>

Sent: Monday, May 13, 2024 1:48 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Effects of Bad Creek II and Expanded Weir on Aquatic Habitat

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I have reviewed the draft report and have no comments. Thank you.

Erika J. Hollis
Clean Water Director
Upstate Forever
507 Pettigru St
Greenville, SC 29601
(864) 250-0500 ext. 117
ehollis@upstateforever.org

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; gcyantis2;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; Ross Self; Stuart, Alan

Witten; Wahl, Nick; William T. Wood; Mularski, Eric

Cc: Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

Subject: RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic

Habitat Report (FINAL REPORT ISSUANCE)

Date: Monday, June 3, 2024 5:31:56 PM

Attachments: <u>image003.png</u>

Importance: High

WARNING: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:

I wanted to notify you the *Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Report* has been finalized and can be accessed at the following link:

20240603_Aquatic Resources Task 2_Effects of BCII and Expanded Weir on Aq Habitat_Final Report.pdf

Please let Alan or me know if you have any questions.

Regards,

John Crutchfield

From: Olds, Melanie J

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; gcyantis2;

jhains@q.clemson.edu; guattrol; Amedee, Morgan D.; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood;

Mularski, Eric

Cc: Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

Subject: Re: [EXTERNAL] RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat

Draft Report (Available for Review)

Date: Monday, June 3, 2024 8:35:33 AM

Attachments: image001.png

image002.png Outlook-mdfya4ir.png Outlook-2vz4aai5.png

You don't often get email from melanie_olds@fws.gov. Learn why this is important

WARNING: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

John,

The Service has review the Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report and has no comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service South Carolina Ecological Services Field Office 176 Croghan Spur Road, Suite 200 Charleston, SC 29407

Phone: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

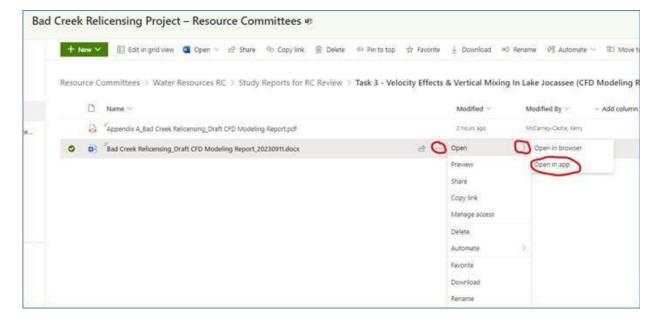
Sent: Friday, May 3, 2024 12:45 PM

To: Abney, Michael A <michael.abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; SelfR@dnr.sc.gov <SelfR@dnr.sc.gov >; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William Wood <woodw@dnr.sc.gov>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>
Cc: Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report (Available for Review)

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the *Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report* for Resource Committee review. This draft report satisfies Task 2 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following folder link: Task 2 - Effects of BCII and Expanded Weir on Aq Habitat. Please make all comments and edits in the Word version using tracked changes. The attachments for the report are provided in the PDF included in the folder.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **June 3rd**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

- Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: Crutchfield Jr., John U

To: McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic

Habitat Draft Report (Available for Review)

Date: Tuesday, June 4, 2024 6:31:03 AM

Attachments: image003.pnq

image004.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

Sent: Monday, June 3, 2024 8:23 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded

Weir on Aquatic Habitat Draft Report (Available for Review)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John.

AQD had no comments.

Thank you, Gerry

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Tuesday, May 28, 2024 7:52 AM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Amy Breedlove < <u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin < <u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < <u>MillerE@dnr.sc.gov</u>>; Erika Hollis < <u>ehollis@upstateforever.org</u>>; Erin Settevendemio@hdrinc.com>; Gerry Yantis < <u>gcyantis2@yahoo.com</u>>; John Haines < <u>ihains@g.clemson.edu</u>>; Lynn Quattro < <u>quattrol@dnr.sc.gov</u>>; Melanie Olds < <u>melanie_olds@fws.gov</u>>; Morgan Amedee < <u>amedeemd@dhec.sc.gov</u>>; Morgan Kern < <u>kernm@dnr.sc.gov</u>>; Ross Self < <u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten < <u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick < <u>Nick.Wahl@duke-energy.com</u>>; William Wood < <u>woodw@dnr.sc.gov</u>>; Mularski, Eric -HDRInc < <u>Eric.Mularski@HDRInc.com</u>>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>

Subject: RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report (Available for Review)

Dear Bad Creek Relicensing Aquatic Resources Committee:

Just a reminder that comments are due on <u>June 3</u> for the *Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report.*

Regards, John Crutchfield

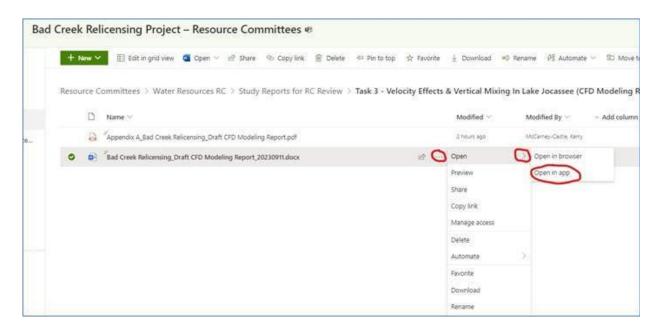
From: Crutchfield Jr., John U Sent: Friday, May 3, 2024 12:46 PM **To:** Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <\(\frac{RankinD@dnr.sc.gov}\); Elizabeth Miller <\(\frac{MillerE@dnr.sc.gov}\); Erika Hollis <\(\frac{ehollis@upstateforever.org}\); Erin Settevendemio@hdrinc.com>; Gerry Yantis <\(\frac{gcyantis2@yahoo.com}\); John Haines <\(\frac{ihains@g.clemson.edu}\); Lynn Quattro <\(\frac{quattrol@dnr.sc.gov}\); Melanie Olds <\(\frac{melanie_olds@fws.gov}\); Morgan Amedee <\(\frac{amedeemd@dhec.sc.gov}\); Morgan Kern <\(\kernm@dnr.sc.gov\); Ross Self <\(\frac{SelfR@dnr.sc.gov}\); Stuart, Alan Witten <\(\frac{Alan.Stuart@duke-energy.com}\); Wahl, Nick <\(\frac{Nick.Wahl@duke-energy.com}\); William Wood <\(\frac{woodw@dnr.sc.gov}\); Mularski, Eric -HDRInc <\(\frac{Eric.Mularski@HDRInc.com}\)

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>

Subject: RE: Bad Creek Relicensing - Aquatic Resources Task 2: Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report (Available for Review)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the *Effects of Bad Creek II and Expanded Weir on Aquatic Habitat Draft Report* for Resource Committee review. This draft report satisfies Task 2 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following folder link: Task 2 - Effects of BCII and Expanded Weir on Aq Habitat. Please make all comments and edits in the Word version using tracked changes. The attachments for the report are provided in the PDF included in the folder.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **June 3rd**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

<u>Important – Please Read!</u>

- Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis; Huff, Jen;

jhains@q.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood;

Morgan D. Amedee; Ericah Beason

Cc: Kulpa, Sarah; Alison Jakupca; Kevin Nebiolo; McCarney-Castle, Kerry; Salazar, Maggie

Subject: Bad Creek Relicensing--Fish Entrainment Report Draft Addenda (READY FOR REVIEW)

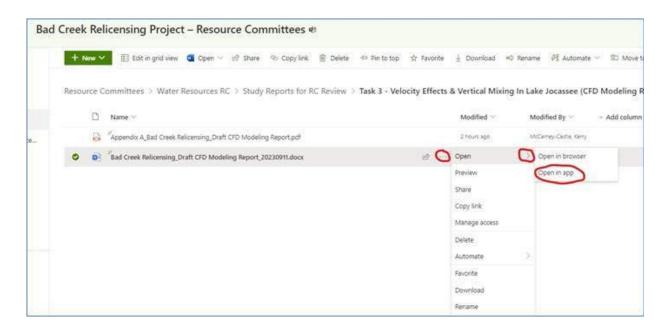
Date: Wednesday, October 30, 2024 1:18:28 PM

Attachments: imaqe001.pnq imaqe002.pnq

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute two draft addendum reports associated with the *Bad Creek Desktop Entrainment Analysis* for Resource Committee review. The final Desktop Entrainment Analysis study report was distributed with the Initial Study Report as Appendix B, Attachment 1 in January 2024; however, since that time, new technology (i.e., variable speed units) has been proposed for Bad Creek II and existing unit upgrades have been completed, requiring additional entrainment modeling to account for increased pumping rates. Results are presented in Addendum 1. Additionally, in comments dated March 1, 2024, FERC staff requested additional information regarding population growth rate estimates for the Bad Creek entrainment analysis. These results are presented in Addendum 2. The two deliverables are available on the Bad Creek Relicensing SharePoint site at the following link: Intrainment Report Addenda

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **November 28th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the <u>SharePoint Word document using tracked changes</u>. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Crutchfield Jr., John U From: McCarney-Castle, Kerry

Fw: [EXTERNAL] Re: Bad Creek Relicensing--Fish Entrainment Report Draft Addenda (READY FOR REVIEW) Subject:

Date: Monday, November 25, 2024 2:31:20 PM

Attachments: image001.png

image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Get Outlook for iOS

From: Erika Hollis <ehollis@upstateforever.org> **Sent:** Monday, November 25, 2024 2:21:47 PM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing--Fish Entrainment Report Draft Addenda (READY FOR REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I have reviewed the draft addendum reports for the Bad Creek 2 Entrainment Analysis and Upstate Forever has no comments.

Thank you.

-Erika

Erika J. Hollis Clean Water Director **Upstate Forever** 507 Pettigru St Greenville, SC 29601 (864) 203-1937 ehollis@upstateforever.org

Upstate Forever is a conservation organization that protects critical lands, waters, and the unique character of the Upstate of South Carolina. Learn more at <u>upstateforever.org</u>.

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Date: Friday, November 22, 2024 at 6:48 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com >, Amy Breedlove

- <BreedloveA@dnr.sc.gov>, Dan Rankin <RankinD@dnr.sc.gov>, Elizabeth Miller
- <MillerE@dnr.sc.gov>, Erika Hollis <ehollis@upstateforever.org>, Erin Settevendemio
- <erin.Settevendemio@hdrinc.com>, Gerry Yantis <gcyantis2@yahoo.com>, Jen Huff
- <jen.huff@hdrinc.com>, John Haines <jhains@g.clemson.edu>, Lynn Quattro <quattrol@dnr.sc.gov>,

Melanie Olds <melanie_olds@fws.gov>, Morgan Amedee <amedeemd@dhec.sc.gov>, Ross Self

<SelfR@dnr.sc.gov>, alan.stuart@duke-energy.com <alan.stuart@duke-energy.com>, Wahl, Nick

<Nick.Wahl@duke-energy.com>, William Wood <woodw@dnr.sc.gov>, Morgan D. Amedee

<morgan.amedee@des.sc.gov>, Ericah Beason <BeasonE@dnr.sc.gov>

Cc: Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>, Alison Jakupca

<Alison.Jakupca@KleinschmidtGroup.com>, Kevin Nebiolo

<Kevin.Nebiolo@KleinschmidtGroup.com>, Kerry McCarney-Castle <Kerry.McCarney-

Castle@hdrinc.com>, Maggie Salazar < maggie.salazar@hdrinc.com>

Subject: RE: Bad Creek Relicensing--Fish Entrainment Report Draft Addenda (READY FOR REVIEW)

Dear Bad Creek Relicensing Aquatic Resources Committee:

Just a reminder that comments are due on the draft addendum reports are due COB on November 28.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, October 30, 2024 1:18 PM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; Jen Huff <jen.huff@hdrinc.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William Wood <woodw@dnr.sc.gov>; Morgan D. Amedee <morgan.amedee@des.sc.gov>; Ericah Beason <BeasonE@dnr.sc.gov> Cc: Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>; Alison Jakupca <Alison.Jakupca@KleinschmidtGroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>

Subject: Bad Creek Relicensing--Fish Entrainment Report Draft Addenda (READY FOR REVIEW)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute two draft addendum reports associated with the **Bad Creek Desktop Entrainment Analysis** for Resource Committee review. The final Desktop Entrainment Analysis study report was distributed with the Initial Study Report as Appendix B, Attachment 1 in January 2024; however, since that time, new technology (i.e., variable speed units) has been proposed for Bad Creek II and existing unit upgrades have been completed, requiring additional entrainment modeling to account for increased pumping rates. Results are presented in Addendum 1. Additionally, in comments dated March 1, 2024, FERC staff requested additional information regarding population growth rate estimates for the Bad Creek entrainment analysis. These results are presented in Addendum 2. The two deliverables are available on the Bad Creek Relicensing SharePoint site at the following link: Entrainment Report Addenda

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **November 28th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@dukeenergy.com).

Important - Please Read!

Duke Energy would like to make relicensing deliverables available on a shared platform (i.e.,
SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments
be made in the SharePoint Word document using tracked changes. This will eliminate version control
issues and result in a consolidated document for comment response.

We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

Huff, Jen; jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Ross Self; Stuart, Alan Witten;

Wahl, Nick; William T. Wood; Morgan D. Amedee; Ericah Beason

Cc: Kulpa, Sarah; Alison Jakupca; Kevin Nebiolo; McCarney-Castle, Kerry; Salazar, Maggie

Subject: RE: Bad Creek Relicensing--Fish Entrainment Report Addenda (FINAL)

Date: Monday, December 2, 2024 9:04:21 AM

Attachments: <u>image001.png</u>

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the two finalized addenda associated with the **Bad Creek Desktop Entrainment Analysis.** These addenda, along with the final 2023 Desktop Entrainment Report, satisfy Task 1 of the Aquatic Resources Relicensing Study and are accessible from the folder linked below. They will be filed with the Updated Study Report as attachments to the final Entrainment Analysis report (Addendum 1 and Addendum 2). As always, Duke Energy appreciates your participation in the Bad Creek Relicensing.

Entrainment Report Addenda

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield